The anti-angiogenic therapy bevacizumab is efficacious in metastatic colorectal cancers (CRCs) when combined with standard chemotherapy. However, overall survival benefit is modest. A further limitation of anti-angiogenic treatment in CRCs was represented by the failure of adjuvant bevacizumab to prevent metastasis in two phase III trials. Improving the outcome in CRC will require overcoming the resistance mechanisms that thwart the anti-VEGF therapy. Clinical studies converged to the observation that anti-VEGF therapy increases circulating cytokine levels. However, the source of these molecules and their relevance in CRC escape remains unknown. We found that anti-VEGF therapy increases SDFIa and IL-6 in preclinical models of CRC. These data are consistent with the upregulation of SDFIa and its receptor CXCR4 in rectal carcinoma patients treated with bevacizumab. In these patients, higher SDFIa and IL-6 plasma levels during bevacizumab treatment were significantly associated with local recurrence and distant metastases. Based on these preliminary data, we hypothesize that VEGF blockade upregulates inflammatory pathways such as SDFIa and IL-6 which fuel CRC growth and promote metastasis in the face of VEGF blockade. We hypothesize that blocking these inflammatory pathways will improve outcomes of anti-VEGF therapy. We will analyze the cellular changes induced by anti-VEGF therapy in CRC stroma and establish the underlying molecular mechanisms (Aim 1). We will then determine the causal role of SDFIa and IL-6 pathways in CRC growth after anti-VEGF treatment (Aim 2). Finally, we will establish the role of these cytokines in CRC metastasis to the liver and lung after anti-VEGF treatment (Aim 3). Using unique experimental technologies, we plan to dissect these molecular, cellular and physiological mechanisms underlying resistance to anti-VEGF therapy in CRC using immunocompetent syngeneic (transplanted) and spontaneous (GEM) CRC models - all of which closely recapitulate the human disease phenotype.

Public Health Relevance

Anti-angiogenic therapy was first approved by the FDA for metastatic colorectal cancer treatment. However, its benefit appears to be modest and short-lived in cancer patients with localized disease. Here we propose to establish strategies to overcome colorectal cancer resistance to anti-angiogenic therapy that leads to local and distant progression.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Padera, Timothy P; Meijer, Eelco F J; Munn, Lance L (2016) The Lymphatic System in Disease Processes and Cancer Progression. Annu Rev Biomed Eng 18:125-58
Datta, Meenal; Via, Laura E; Chen, Wei et al. (2016) Mathematical Model of Oxygen Transport in Tuberculosis Granulomas. Ann Biomed Eng 44:863-72
Kloepper, Jonas; Riedemann, Lars; Amoozgar, Zohreh et al. (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A 113:4476-81
Chng, Kern Rei; Chan, Sock Hoai; Ng, Amanda Hui Qi et al. (2016) Tissue Microbiome Profiling Identifies an Enrichment of Specific Enteric Bacteria in Opisthorchis viverrini Associated Cholangiocarcinoma. EBioMedicine 8:195-202
Incio, Joao; Liu, Hao; Suboj, Priya et al. (2016) Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discov 6:852-69
Kunert, Christian; Baish, James W; Liao, Shan et al. (2016) Reply to Davis: Nitric oxide regulates lymphatic contractions. Proc Natl Acad Sci U S A 113:E106
Park, Kyung Ran; Monsky, Wayne L; Lee, Chang Geol et al. (2016) Mast Cells Contribute to Radiation-Induced Vascular Hyperpermeability. Radiat Res 185:182-9
Singhal, Prabhat K; Sassi, Slim; Lan, Lan et al. (2016) Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity. Proc Natl Acad Sci U S A 113:122-7
Askoxylakis, Vasileios; Ferraro, Gino B; Kodack, David P et al. (2016) Preclinical Efficacy of Ado-trastuzumab Emtansine in the Brain Microenvironment. J Natl Cancer Inst 108:
Pinter, Matthias; Trauner, Michael; Peck-Radosavljevic, Markus et al. (2016) Cancer and liver cirrhosis: implications on prognosis and management. ESMO Open 1:e000042

Showing the most recent 10 out of 248 publications