PROJECT 2: Molecular Inhibition of Apoptosis Inhibitors B-cell chronic lymphocytic leukemia [B-CLL] arises primarily because of failures in apoptosis mechanisms. Aberrant over-expression of anti-apoptotic Bcl-2 family proteins contributes greatly to the long lifespan of CLL cells, and also thwarts attempts to eradicate these leukemic cells by chemotherapy. The human genome contains six genes encoding anti-apoptotic Bcl-2 family proteins (Bcl-2, BCI-XL, Mcl-1, Bfl-1, Bcl-W, Bcl-B), several of which are often highly expressed in CLLs. Expression of Mcl-1 or Bfl-1 accounts for resistance to chemical antagonists of Bcl-2, such as ABT263 analogs. Moreover, expression of these pro survival proteins increases in CLL cells thriving in microenvironmental niches. We hypothesize that redundancy caused by multiple anti-apoptotic Bcl-2 family members is a critical barrier to effective treatment of CLL. We propose to test this hypothesis through 3 complementary approaches. First. ABT263 and other small molecule Bcl-2 antagonists currently in clinical development bind a regulatory site on Bcl-2, mimicking endogenous antagonists that contain the BH3 domain. We have generated novel BH3 mimicking compounds with broad-spectrum inhibitory activity against all anti-apoptotic Bcl-2 family proteins. These compounds will be tested for preclinical activity against primary human CLL cells in culture and against murine CLL cells in transgenic mouse models. Second, we have identified a non-BH3 regulator of Bcl-2 in the Nur77/TR3 protein, an orphan nuclear receptor that binds to Bcl-2, Bfl-1, and Bcl-B, converting these proteins from antito pro-apoptotic. Using Nur77/TR3, we have discovered a novel non-BH3 regulatory site on Bcl-2 family proteins that will be targeted with small molecules as an alternative approach to Bcl-2 antagonism. Third. expression of many anti-apoptotic Bcl-2 family proteins (including Mel-1, BCI-XL, and Bfl-1) is upregulated when CLL cells are influenced by microenvironment. Hence, agents from Aims 1 and 2 will be evaluated for activity against CLL cells using in vitro culture models of microenvironment interactions. Altogether, our goal is to extend preclinical studies of novel Bcl-2 family antagonists towards the ultimate goal of bringing these concepts and new agents into the clinic via the CLL Research Consortium (CRC).

Public Health Relevance

CLL is the most common type of leukemia in the Western world, remaining incurable with currently available therapies. In this project, we propose to generate novel pro-apoptotic drugs and to elucidate synergistic drug combinations, creating novel strategies for the improved treatment of CLL.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA081534-13
Application #
8562417
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
13
Fiscal Year
2013
Total Cost
$440,176
Indirect Cost
$64,664
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Kashyap, Manoj K; Kumar, Deepak; Jones, Harrison et al. (2016) Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget 7:2809-22
Lamothe, Betty; Wierda, William G; Keating, Michael J et al. (2016) Carfilzomib Triggers Cell Death in Chronic Lymphocytic Leukemia by Inducing Proapoptotic and Endoplasmic Reticulum Stress Responses. Clin Cancer Res 22:4712-26
Oakes, Christopher C; Seifert, Marc; Assenov, Yassen et al. (2016) DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 48:253-64
Balatti, Veronica; Acunzo, Mario; Pekarky, Yuri et al. (2016) Novel mechanisms of regulation of miRNAs in CLL. Trends Cancer 2:134-143
Lampson, Benjamin L; Kasar, Siddha N; Matos, Tiago R et al. (2016) Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 128:195-203
Salzer, Elisabeth; Cagdas, Deniz; Hons, Miroslav et al. (2016) RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol 17:1352-1360
Dhar, Sachin; La Clair, James J; León, Brian et al. (2016) A Carbohydrate-Derived Splice Modulator. J Am Chem Soc 138:5063-8
Hawkins, Edwin D; Duarte, Delfim; Akinduro, Olufolake et al. (2016) T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538:518-522
Sarkar, Aloke; Balakrishnan, Kumudha; Chen, Jefferson et al. (2016) Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma. Oncotarget 7:3461-76
Thompson, Philip A; O'Brien, Susan M; Xiao, Lianchun et al. (2016) β2 -microglobulin normalization within 6 months of ibrutinib-based treatment is associated with superior progression-free survival in patients with chronic lymphocytic leukemia. Cancer 122:565-73

Showing the most recent 10 out of 440 publications