Core D provides the platform and infrastructure in which CRC investigators at multiple institutions develop, implement, execute, monitor, and analyze CRC clinical and laboratory data from subjects treated on clinical trials and enrolled in the CRC Tissue Bank. Furthermore, the investigators of Core D will identify and develop clinical research strategies utilizing new agents and combinations, with the ultimate goal of curing CLL. A primary objective of Core D is to provide indispensable clinical input and focus for collection and management of clinical data for CRC Projects and Tissue Bank. A web-based CRC Integrated Information Management System(CIMS) was developed in collaboration with the CRC Biomedical Informatics (CBMI) Workgroup. This system was designed to collect and manage clinical and laboratory information for patients samples stored in the CRC Tissue Bank and for patients treated on CRC clinical trials. This system enables collection of clinical and laboratory information from each CRC site via the Internet in real-time. Current and proposed efforts will be to transition to automated methods of data collection. Clinical research-based objectives will utilize clinical and laboratory information to develop new prognostic models, treatments and treatment objectives for patients with CLL. Core D will assure accurate and complete data collection for the following purposes: reports;patient scheduling/calendaring;data exports that facilitate analyses and reporting;and patient data monitoring and auditing and assuring regulatory and sponsor compliance required by each CRC clinical trial. Since last funding, the CRC has complete 5 clinical studies which are published, in follow-up, or in manuscript preparation. The CRC currently has 4 active clinical trials as detailed in this Core D write-up. Finally, there are 14 clinical trials in development as described in this Core D write-up and in each Project description throughout the grant application. Because there are circulating tumor cells that can be easily and readily accessed and given the scientific quality of CRC Project investigators, the CRC is uniquely positioned to do detailed correlative studies for patients treated on clinical trial in order to address mechanism of action questions and hypotheses testing and confirmation.

Public Health Relevance

The Clinical Core D is fundamental and essential to the translational research proposed in this Program Project. Clinical data associated with Tissue Bank samples and clinical-translational data from patients treated on clinical trials are fundamental and essential to conduct of this CRC Program Project. All Projects utilize patient samples from the Tissue Bank and all Projects propose translational studies related to ongoing or planning clinical trials.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Kashyap, Manoj K; Kumar, Deepak; Jones, Harrison et al. (2016) Ulocuplumab (BMS-936564 / MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget 7:2809-22
Lamothe, Betty; Wierda, William G; Keating, Michael J et al. (2016) Carfilzomib Triggers Cell Death in Chronic Lymphocytic Leukemia by Inducing Proapoptotic and Endoplasmic Reticulum Stress Responses. Clin Cancer Res 22:4712-26
Oakes, Christopher C; Seifert, Marc; Assenov, Yassen et al. (2016) DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 48:253-64
Balatti, Veronica; Acunzo, Mario; Pekarky, Yuri et al. (2016) Novel mechanisms of regulation of miRNAs in CLL. Trends Cancer 2:134-143
Lampson, Benjamin L; Kasar, Siddha N; Matos, Tiago R et al. (2016) Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 128:195-203
Salzer, Elisabeth; Cagdas, Deniz; Hons, Miroslav et al. (2016) RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol 17:1352-1360
Dhar, Sachin; La Clair, James J; León, Brian et al. (2016) A Carbohydrate-Derived Splice Modulator. J Am Chem Soc 138:5063-8
Hawkins, Edwin D; Duarte, Delfim; Akinduro, Olufolake et al. (2016) T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538:518-522
Sarkar, Aloke; Balakrishnan, Kumudha; Chen, Jefferson et al. (2016) Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma. Oncotarget 7:3461-76
Thompson, Philip A; O'Brien, Susan M; Xiao, Lianchun et al. (2016) β2 -microglobulin normalization within 6 months of ibrutinib-based treatment is associated with superior progression-free survival in patients with chronic lymphocytic leukemia. Cancer 122:565-73

Showing the most recent 10 out of 440 publications