Recognizing that the complexity of cancer biology makes it virtually impossible for any single therapy to be optimally effective, the overall hypothesis of this research is that, two or more therapies that are mechanistically independent and directed at non-overlapping molecular targets and pathways will provide the most effective treatments. In particular, the dismal statistics for Pancreatic Cancer (PanCa) and its tenacious resistance to current therapies demand innovative approaches with sound mechanistic bases. The goal of this Project is to develop mechanism-based Photodynamic Therapy (PDT) combination regimens to synergistically enhance efficiency of PDT in preclinical models of PanCa where PDT alone has already shown promise. The strategy is to combine PDT with a biologic therapy that is specific to the particular molecular response elicited by PDT in an approach we term Combination Photodynamic Biologic Therapy (CPBT). PDT is an effective treatment for cancer, which kills most cells in solid tumors, and although molecular responses instigated by surviving cells could mitigate overall treatment outcome, these same responses also provide an opportunity in new molecular targets that could greatly enhance specificity and efficiency of treatment outcome. The goals of the study will be realized in 5 specific aims.
Aim 1 will examine molecular responses to sub-lethal PDT and test CPBT targeted to these responses in in vitro organotypic cultures.
Aim 2 -5 will utilize an orthotopic model of PanCa where Aim 2 will optimize PDT parameters in vivo and along with information on the success of CPBT in Aim 1, will guide PDT-based combination treatments in vivo, in Aim 3. Since Gem is standard chemotherapy for PanCa, successful combination treatments in Aim 3 will be further examined in combination with Gem in Aim 4. Finally, the two most successful treatments from Aim 4 will be extended to a long-term survival study in Aim 5. Cores B and C will be used throughout;e.g. on-line measurement of molecular responses, PDT dosimetry, pathology and statistical considerations. The promise of PDT in clinical studies and in several preclinical models for PanCa, our significant preliminary findings and collaborations within the program provide the impetus for the proposed investigations. Potential benefits to public health: the studies in Project 3will lead to newtreatment options for PanCa, a disease with a very poor prognosis with current treatments placing a heavy burden on society in terms of cost and suffering.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
O'Brien, Darragh P; Sandanayake, Neomal S; Jenkinson, Claire et al. (2015) Serum CA19-9 is significantly upregulated up to 2 years before diagnosis with pancreatic cancer: implications for early disease detection. Clin Cancer Res 21:622-31
Samkoe, Kimberley S; Tichauer, Kenneth M; Gunn, Jason R et al. (2014) Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach. Cancer Res 74:7465-74
Skipworth, J R A; Keane, M G; Pereira, S P (2014) Update on the management of cholangiocarcinoma. Dig Dis 32:570-8
Huggett, Matthew T; Passant, Helen; Hurt, Chris et al. (2014) Outcome and patterns of care in advanced biliary tract carcinoma (ABC): experience from two tertiary institutions in the United Kingdom. Tumori 100:219-24
Jermyn, Michael; Davis, Scott C; Dehghani, Hamid et al. (2014) CT contrast predicts pancreatic cancer treatment response to verteporfin-based photodynamic therapy. Phys Med Biol 59:1911-21
Spring, Bryan Q; Abu-Yousif, Adnan O; Palanisami, Akilan et al. (2014) Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci U S A 111:E933-42
Spring, Bryan Q; Palanisami, Akilan; Hasan, Tayyaba (2014) Microscale receiver operating characteristic analysis of micrometastasis recognition using activatable fluorescent probes indicates leukocyte imaging as a critical factor to enhance accuracy. J Biomed Opt 19:066006
Kanick, Stephen Chad; Davis, Scott C; Zhao, Yan et al. (2014) Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis. J Biomed Opt 19:75002
Anand, Sanjay; Rollakanti, Kishore R; Horst, Ronald L et al. (2014) Combination of oral vitamin D3 with photodynamic therapy enhances tumor cell death in a murine model of cutaneous squamous cell carcinoma. Photochem Photobiol 90:1126-35
Keane, Margaret G; Bramis, Konstantinos; Pereira, Stephen P et al. (2014) Systematic review of novel ablative methods in locally advanced pancreatic cancer. World J Gastroenterol 20:2267-78

Showing the most recent 10 out of 101 publications