The overarching goal of this program project grant application is to change current clinical paradigms through the support of accurate, early detection and measurement of breast cancer response to chemotherapy (Projects 1, 3), and presurgical motor and temporal language cortex evaluation of brain function (Project 2) through the development, application and testing of robust and sophisticated registration and related signal processing tools. Project 1 investigates the efficacy of early-assessment and measurement of response to neoadjuvant chemo or hormonal therapy for patients with breast cancer obtained through the use of volumetric, diffusion and dynamic contrast enhancement MRI. The hypothesis is that nonlinear registration of interval breast exams increases the sensitivity and specificity of functional diffusion mapping (fDM) as well as the accuracy of dynamic contrast enhancement (DCE). Developing low noise, unbiased tools for assessing lesion response to therapy is currently an important topic. Project 2 extends previously completed work on registration-based fMRI motion by examining the benefits of combining our unique motion correction method with different fMRI acquisition protocols, e.g. clustered acquisition, to improve communication with the patient and response monitoring. Project 3 addresses the fundamental ambiguity problem in dynamic MRI associated with imaging in general: for any given technique either we can obtain high spatial or temporal resolution imaging data, but not both. Generalized techniques that support controlling and optimizing these tradeoffs during dynamic imaging in MRI are very important.

Public Health Relevance

The hypothesis is that these tools will dramatically improve the management of breast cancer patients by individuating therapy based on early, more accurate information that the chosen therapy regimen is/isn't working and should be continued/changed, respectively. For breast cancer therapy patients there is no reason to risk anemia, depleted white cells and platelets, and lost time to continue a debilitating chemotherapy regimen with no benefits in tumor suppression. For brain cancer patients the hypothesis is that presurgical evaluation of language and motor cortex will dramatically effect presurgical planning possibly even to the extent of deciding that a tumor is inoperable based on deficits that would be induced by its removal. Additional risks associated with extended open cranium-durations from electro-stimulation studies can be avoided by an appropriate presurgical fMRI evaluation which specifically includes the language and motor cortex, while reserving surgery primarily for resection. For both sets of patients emotional and monetary costs as well as health risks could be significantly reduced.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P (O1))
Program Officer
Nordstrom, Robert J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Schools of Medicine
Ann Arbor
United States
Zip Code
Nataraj, Gopal; Nielsen, Jon-Fredrick; Fessler, Jeffrey (2016) Optimizing MR Scan Design for Model-Based T1, T2 Estimation from Steady-State Sequences. IEEE Trans Med Imaging :
Larson, Eric D; Lee, Won-Mean; Roubidoux, Marilyn A et al. (2016) Automated Breast Ultrasound: Dual-Sided Compared with Single-Sided Imaging. Ultrasound Med Biol 42:2072-82
Berisha, Visar; Wisler, Alan; Hero, Alfred O et al. (2016) Empirically Estimable Classification Bounds Based on a Nonparametric Divergence Measure. IEEE Trans Signal Process 64:580-591
Hero, Alfred O; Rajaratnam, Bala (2016) Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining. Proc IEEE Inst Electr Electron Eng 104:93-110
Galbán, Craig J; Ma, Bing; Malyarenko, Dariya et al. (2015) Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLoS One 10:e0122151
Brisset, Jean-Christophe; Hoff, Benjamin A; Chenevert, Thomas L et al. (2015) Integrated multimodal imaging of dynamic bone-tumor alterations associated with metastatic prostate cancer. PLoS One 10:e0123877
Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A (2015) Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA). IEEE Trans Med Imaging 34:578-88
Zhao, Feng; Fessler, Jeffrey A; Wright, Steven M et al. (2014) Regularized estimation of magnitude and phase of multi-coil b1 field via Bloch-Siegert B1 mapping and coil combination optimizations. IEEE Trans Med Imaging 33:2020-30
Boes, Jennifer L; Hoff, Benjamin A; Hylton, Nola et al. (2014) Image registration for quantitative parametric response mapping of cancer treatment response. Transl Oncol 7:101-10
Watanabe, Takanori; Kessler, Daniel; Scott, Clayton et al. (2014) Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine. Neuroimage 96:183-202

Showing the most recent 10 out of 85 publications