The NIH Roadmap stipulates that epigenetics is a research priority. Unlike genetic changes associated with cancer, epigenetic changes are potentially modifiable, and dietary factors have been shown to """"""""de-repress"""""""" epigenetically-silenced genes in cancer cells, triggering cell cycle arrest and apoptosis. The overall long-term objectives of this P01 are to better understand the mechanisms by which beneficial epigenetic changes can be brought about by dietary agents, to identify and characterize epigenetic biomarkers that can be applied in the clinical setting, and to evaluate those biomarkers in preclinical and translational studies. With three well-integrated Projects and a complementary Epigenetic/Translational Biomarkers Core, this competing continuation addresses the application (and possible risks) of dietary indoles and isothiocyanates for cancer intervention, through comparative mechanism, biomarker, and preclinical models (lymphoma, prostate, colon, lung cancer), leading to translational studies of epigenetic biomarkers in human volunteers. The CENTRAL HYPOTHESIS is that sulforaphane (SFN) and indole-3-carbinol (ISC), and the cruciferous vegetables from which they derive, are effective chemopreventive agents because, in addition to their blocking activities during the initiation phase, they alter the pattern of histone modifications (acetylation, methylation, phosphorylation) and histone deacetylase (HDAC) activity in cancer cells, as well as DNA promoter methylation status, thereby de-repressing epigenetically silenced genes that regulate the cell cycle and apoptosis. E. Ho will investigate """"""""Chemoprevention of prostate cancer, HDAC inhibition, and DNA methylation"""""""" (Project 1), D.E. Williams will study """"""""Transplacental chemoprevention of lung tumors and lymphomas"""""""" (Project 2), and R.H. Dashwood will examine """"""""Chemoprevention of colon cancer, HDAC inhibition, and histone status"""""""" (Project 3). The overall significance of the work is that it seeks to provide new epigenetic insights into the prevention and treatment of colon, prostate, and lung cancer, as well as lymphoma, which are listed consistently among the top causes of cancer-related deaths in the US. This application is innovative and timely in bridging basic mechanisms, preclinical models, and human studies of epigenetics and diet.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
7P01CA090890-10
Application #
8732423
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Program Officer
Malone, Winfred F
Project Start
2001-04-01
Project End
2015-04-30
Budget Start
2014-08-18
Budget End
2015-04-30
Support Year
10
Fiscal Year
2014
Total Cost
$1,392,370
Indirect Cost
$210,962
Name
Texas A&M University
Department
Type
DUNS #
835607441
City
College Station
State
TX
Country
United States
Zip Code
77845
Madeen, Erin P; Williams, David E (2017) Environmental PAH exposure and male idiopathic infertility: a review on early life exposures and adult diagnosis. Rev Environ Health 32:73-81
Beaver, Laura M; Kuintzle, Rachael; Buchanan, Alex et al. (2017) Long noncoding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer. J Nutr Biochem 42:72-83
Palomera-Sanchez, Zoraya; Watson, Gregory W; Wong, Carmen P et al. (2017) The phytochemical 3,3'-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells. J Nutr Biochem 47:113-119
Chen, Ying-Shiuan; Wang, Rong; Dashwood, Wan-Mohaiza et al. (2017) A miRNA signature for an environmental heterocyclic amine defined by a multi-organ carcinogenicity bioassay in the rat. Arch Toxicol 91:3415-3425
Wang, Rong; Chen, Ying-Shiuan; Dashwood, Wan-Mohaiza et al. (2017) Divergent roles of p120-catenin isoforms linked to altered cell viability, proliferation, and invasiveness in carcinogen-induced rat skin tumors. Mol Carcinog 56:1733-1742
Madeen, Erin P; Löhr, Christiane V; You, Hannah et al. (2017) Dibenzo[def,p]chrysene transplacental carcinogenesis in wild-type, Cyp1b1 knockout, and CYP1B1 humanized mice. Mol Carcinog 56:163-171
Johnson, Gavin S; Li, Jia; Beaver, Laura M et al. (2017) A functional pseudogene, NMRAL2P, is regulated by Nrf2 and serves as a coactivator of NQO1 in sulforaphane-treated colon cancer cells. Mol Nutr Food Res 61:
Ertem, Furkan U; Zhang, Wenqian; Chang, Kyle et al. (2017) Oncogenic targets Mmp7, S100a9, Nppb and Aldh1a3 from transcriptome profiling of FAP and Pirc adenomas are downregulated in response to tumor suppression by Clotam. Int J Cancer 140:460-468
Kim, Hyemee; Banerjee, Nivedita; Barnes, Ryan C et al. (2017) Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo. Mol Carcinog 56:197-207
Wang, Rong; Kang, Yuki; Löhr, Christiane V et al. (2016) Reciprocal regulation of BMF and BIRC5 (Survivin) linked to Eomes overexpression in colorectal cancer. Cancer Lett 381:341-8

Showing the most recent 10 out of 121 publications