Our goal is to enhance strengths previously identified and eliminate weaknesses. The focus remains development of a transplacental chemoprevention model integrated with projects 1 &3 to address mechanisms. We examine blocking mechanisms and risk VS benefit to mother and fetus with a focus on epigenetics demanding tight integration among projects. The scope is only possible with the participation of the other projects and cores. The central hypothesis is sulforaphane (SFN) and indole-3-carbinol (I3C) are chemopreventive agents, as are the whole foods, in a PAH-transplacental lymphoma, lung, liver and ovary cancer model. Mechanisms are blocking and/or epigenetic, the degree depending on the phytochemical. Focus on the same phytochemicals enhance integration and synergism. We test the hypotheses by pursuit of 3 integrated aims progressing from discovery and mechanistic studies in pregnant mice to a small human trial. The translational nature is also enhanced by use of a "humanized" mouse. The trial with human volunteers takes advantage of the remarkable sensitivity of accelerator mass spectromety (AMS).
Specific Aim 1 : Test the response of humanized mice;examine 130 dose-response and compare purified phytochemicals (at human dietary levels) to whole foods;test windows of maternal dietary I3C and SFN exposure;test post-initiation suppression;utilize lung- and liver-specific models;determine role of nrf2 signaling in a gene dosage study;and test transplacental cancer chemoprevention in an F2 generation.
Specific aim 2 : Focus entirely on epigenetics with a known target (CYP1B1), followed by p21, gstp1 and cyclind2, promising targets in common with projects 1 &3.
Specific aim 3 : Utilize AMS to determine pharmacokinetics of a non-carcinogenic PAH in humans and impact of I3C pretreat. Assess bioavailability of I3C derivatives and compare I3C with the whole food (Brussels sprouts). This is a highly translational aim that serves as a prelude to further studies of PAH exposure and transplacental chemoprevention. This project is highly integrated with the other 2 as we will provide tissues to both and, in return, will be able to determine the similarities and differences of chemoprevention mechanisms between mouse and human.

Public Health Relevance

The fetus and infant have a much greater risk of toxicity from exposures to chemicals in the womb or through breast milk. These chemicals include transplacental carcinogens. We developed a novel model to study phytochemicals added to maternal diet in chemoprevention of these cancers. Preliminary evidence points to epigenetic programming of gene expression in offspring being key in this transplacental chemoprevention. We now, integrating with projects 1 &2, address the mechanisms and potential significance to humans.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Texas A&M University
College Station
United States
Zip Code
Beaver, Laura M; Buchanan, Alex; Sokolowski, Elizabeth I et al. (2014) Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention. Mol Nutr Food Res 58:2001-13
Wong, Carmen P; Hsu, Anna; Buchanan, Alex et al. (2014) Effects of sulforaphane and 3,3'-diindolylmethane on genome-wide promoter methylation in normal prostate epithelial cells and prostate cancer cells. PLoS One 9:e86787
Kang, Y; Nian, H; Rajendran, P et al. (2014) HDAC8 and STAT3 repress BMF gene activity in colon cancer cells. Cell Death Dis 5:e1476
W Watson, Gregory; M Beaver, Laura; E Williams, David et al. (2013) Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS J 15:951-61
Benninghoff, Abby D; Williams, David E (2013) The role of estrogen receptor ? in transplacental cancer prevention by indole-3-carbinol. Cancer Prev Res (Phila) 6:339-48
Wang, Rong; Lohr, Christiane V; Fischer, Kay et al. (2013) Epigenetic inactivation of endothelin-2 and endothelin-3 in colon cancer. Int J Cancer 132:1004-12
Rajendran, Praveen; Kidane, Ariam I; Yu, Tian-Wei et al. (2013) HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics 8:612-23
Shorey, Lyndsey E; Madeen, Erin P; Atwell, Lauren L et al. (2013) Differential modulation of dibenzo[def,p]chrysene transplacental carcinogenesis: maternal diets rich in indole-3-carbinol versus sulforaphane. Toxicol Appl Pharmacol 270:60-9
Kaur, Pushpinder; Shorey, Lyndsey E; Ho, Emily et al. (2013) The epigenome as a potential mediator of cancer and disease prevention in prenatal development. Nutr Rev 71:441-57
Shorey, Lyndsey E; Castro, David J; Baird, William M et al. (2012) Transplacental carcinogenesis with dibenzo[def,p]chrysene (DBC): timing of maternal exposures determines target tissue response in offspring. Cancer Lett 317:49-55

Showing the most recent 10 out of 84 publications