Project 2 (Replication-Associated Repair and Replication Fork Maintenance) of the SBDR Program Project focuses on the integration of multiple DNA repair pathways at replication forks and their roles in the maintenance of genomic stability. Cells devote significant resources to detecting and repairing DNA damage prior to replication and to protecting active replication forks in the presence of replisome-stalling lesions. Failure in these processes or in their coordination can lead to cancer and aging. The goal of this research is to use a combination of structural and functional approaches to investigate the protein-protein and protein- DNA interfaces required for coordinated damage recognition and repair in association with replication. We propose four Aims to examine keystone proteins involved in excision repair pathways that remove damage prior to or in coordination with the replisome, and with proteins involved in fork stability.
Aim 1 will investigate the structural and functional basis for roles of XPG in NER, BER, and replication-associated repair by atomic resolution studies of the structured endonuclease domain and by structural characterization of the relatively unstructured R- and C-terminus domains via their interaction with partner proteins RPA, ubiquitinated PCNA, and DNA Ligase I.
Aim 2 will investigate the structural and functional basis for the role of the annealing helicase, SMARCAL1, with RPA at stalled replication forks. Since SMARCAL1 is the first annealing helicase demonstrated to act in maintaining genome integrity at stalled forks, it is critically important to understand its function at a mechanistic level.
Aim 3 will investigate the structural biology of NEIL1-initiated BER of oxidized bases, through interactions with FEN-1 and XPG, XRCC1/Ligase III, and with RPA.
Aim 4 will focus on PNKP, which has kinase and phosphatase activities critical for both single-strand and double-strand break repair processes and which is also an essential component of NEIL-directed BER. We will investigate PNKP phosphatase domain substrate binding, structurally characterize PNKP interaction with a specific inhibitor of its phosphatase activity, and interrogate the interaction of PNKP with XRCC1/Ligase III. The proposed studies are built upon major findings and collaborations generated during the previous funding period in SBDR2. They include experimental interactions and substantial synergy with Projects 1, 3, 4, and 6, as well as with the EMB and SCB Cores. The anticipated outcome of these studies is a much more detailed molecular picture of the protein-protein and protein-DNA complexes involved in replication-associated repair. The information generated will elucidate the mode of action of a promising DNA repair inhibitor and contribute to its optimization, and will define new potential targets for novel cancer therapies.

Public Health Relevance

Cancer cells have elevated levels of replication-stress due to abnormal cell division cycles, and many cancers have mutations that alter replication-associated repair mechanisms. These properties make cancer cells particularly dependent upon replication checkpoint and repair pathways. Project 2 aims to define the structural and functional interactions and interfaces between multi-functional protein-protein and protein-DNA complexes required for replication-associated repair, with the goal of providing new potential targets for novel cancer therapies.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Lawrence Berkeley National Laboratory
United States
Zip Code
Liang, Fengshan; Longerich, Simonne; Miller, Adam S et al. (2016) Promotion of RAD51-Mediated Homologous DNA Pairing by the RAD51AP1-UAF1 Complex. Cell Rep 15:2118-26
Jiang, Bingcheng; Glover, J N Mark; Weinfeld, Michael (2016) Neurological disorders associated with DNA strand-break processing enzymes. Mech Ageing Dev :
Stingele, Julian; Bellelli, Roberto; Alte, Ferdinand et al. (2016) Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN. Mol Cell 64:688-703
Hammel, Michal; Amlanjyoti, Dhar; Reyes, Francis E et al. (2016) HU multimerization shift controls nucleoid compaction. Sci Adv 2:e1600650
Brosey, Chris A; Ho, Chris; Long, Winnie Z et al. (2016) Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor. Structure 24:2067-2079
Hodge, Curtis D; Ismail, Ismail H; Edwards, Ross A et al. (2016) RNF8 E3 Ubiquitin Ligase Stimulates Ubc13 E2 Conjugating Activity That Is Essential for DNA Double Strand Break Signaling and BRCA1 Tumor Suppressor Recruitment. J Biol Chem 291:9396-410
Balestrini, Alessia; Nicolas, Laura; Yang-Lott, Katherine et al. (2016) Defining ATM-Independent Functions of the Mre11 Complex with a Novel Mouse Model. Mol Cancer Res 14:185-95
Lai, Yanhao; Budworth, Helen; Beaver, Jill M et al. (2016) Crosstalk between MSH2-MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair. Nat Commun 7:12465
Patrone, James D; Pelz, Nicholas F; Bates, Brittney S et al. (2016) Identification and Optimization of Anthranilic Acid Based Inhibitors of Replication Protein A. ChemMedChem 11:893-9
Yang, Chunying; Sengupta, Shiladitya; Hegde, Pavana M et al. (2016) Regulation of oxidized base damage repair by chromatin assembly factor 1 subunit A. Nucleic Acids Res :

Showing the most recent 10 out of 408 publications