This is a competing renewal of a highly succesful project concerning the role of the Hh pathway in medulloblastoma. Previously, we obtained dramatic results using a small molecule antagonist of the Hh pathway (HhAntag) in a spontaneous mouse model of medulloblastoma. However, recently, we also found that HhAntag treatment of young mice causes severe defects in bone development. We will now investigate the mechanism of action of HhAntag in tumor cells, as well as in developing bone, to optimize strategies for delivering this potentially revolutionary treatment for a subset of human medulloblastoma. We will also establish new pediatric brain tumor models to investigate the mechanism of action of HhAntag in human medulloblastoma as well as in a broader spectrum of pediatric brain tumors.
In Aim 1, we will address the mechanism responsible for the anti-tumor effect of HhAntag as well as its effect on bone development. We will investigate alternative delivery methods and different structural classes of inhibitors in an effort to minimize the deletrious effects on developing bone. We will also screen for other inhibitors or targets that may be more selective for brain tumors.
In Aim 2, we propose to investigate the role of the microenvironment in maintaining Hh pathway activity in vitro. We will utilize stem cell culture techniques, coculture with stromal support cells, and transplantation in an attempt to maintain pathway activity in mouse medulloblastoma cells. Once established, we will use these conditions to propagate human medulloblastoma carrying PTCH1 mutations so that we can test their response to HhAntag.
In Aim 3, we will investigate the role of the Hh pathway in pediatric brain tumors lacking known Hh pathway mutations. Tumors will be collected and characterized by genomic profiling, and used to establish new culture and transplantation models. We will investigate the effect of HhAntag on tumors and stromal support cells in a range of tumors, including Atypical Teratoid/Rhabdoid Tumors and Choroid Plexus Carcinoma.

Public Health Relevance

Cancer treatments are usually developed to treat adult disease but childrens brain tumors are very different. We are developing new approaches specifically targeted to the unique aspects of pediatric disease. Our previous work gave very promising leads that we will now follow so that we can deliver the new therapy while avoiding side effects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA096832-09
Application #
8375488
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
9
Fiscal Year
2012
Total Cost
$503,843
Indirect Cost
$168,551
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Dumitrache, Lavinia C; McKinnon, Peter J (2017) Polynucleotide kinase-phosphatase (PNKP) mutations and neurologic disease. Mech Ageing Dev 161:121-129
Hoch, Nicolas C; Hanzlikova, Hana; Rulten, Stuart L et al. (2017) XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541:87-91
Vo, BaoHan T; Li, Chunliang; Morgan, Marc A et al. (2017) Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive Myc-Driven Group 3 Medulloblastoma. Cell Rep 18:2907-2917
Wei, Lei; Murphy, Brian L; Wu, Gang et al. (2017) Exome sequencing analysis of murine medulloblastoma models identifies WDR11 as a potential tumor suppressor in Group 3 tumors. Oncotarget 8:64685-64697
Illuzzi, Jennifer L; McNeill, Daniel R; Bastian, Paul et al. (2017) Tumor-associated APE1 variant exhibits reduced complementation efficiency but does not promote cancer cell phenotypes. Environ Mol Mutagen 58:84-98
Genthe, Jamie R; Min, Jaeki; Farmer, Dana M et al. (2017) Ventromorphins: A New Class of Small Molecule Activators of the Canonical BMP Signaling Pathway. ACS Chem Biol 12:2436-2447
Pajtler, Kristian W; Mack, Stephen C; Ramaswamy, Vijay et al. (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 133:5-12
Fukuda, Yu; Wang, Yao; Lian, Shangli et al. (2017) Upregulated heme biosynthesis, an exploitable vulnerability in MYCN-driven leukemogenesis. JCI Insight 2:
Nakanishi, Takeo; Ohno, Yasuhiro; Aotani, Rika et al. (2017) A novel role for OATP2A1/SLCO2A1 in a murine model of colon cancer. Sci Rep 7:16567
Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M et al. (2017) DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis. J Neurosci 37:893-905

Showing the most recent 10 out of 186 publications