The aims of the Neuropathology Core are: To establish a comprehensive and standardized histopathological service to research groups in the Program. ? To provide advice and expertise on neuropathological interpretation to research groups in the Program. ? To record histopathological findings and assessments in a form that is both accessible to the research groups in the Program and readily integrated with other data for the purposes of comparative analysis. ? To establish a comparative classification of human and mouse model CNS tumors. A uniform approach to histological analysis is essential to this Program. High quality methodologies and expert evaluation of preparations will enable a robust and detailed characterization of human and mouse central nervous system (CNS) tumors from across the Program. There is scope for a detailed comparative analysis at histological and molecular levels of human and mouse model CNS tumors, both within one histopathological category, e.g. primitive neuroectodermal tumors (PNETs), and across categories, e.g. PNETs versus gliomas. Histopathological analysis will be critical for validation of genetic modification in mouse model tumors, human and mouse tumor cell characterization at the immunohistochemical and molecular cytogenetic levels, and determining the effects of novel small-molecule pharmacological agents. New diagnostic approaches combining histopathological and molecular analyses will be generated by these studies, and could form the basis for patient stratification in future clinical trials of novel therapies

Public Health Relevance

An increased understanding of the development and biology of brain tumors in childhood will advance treatment of these devastating diseases. Central to such therapeutic advances will be novel diagnostic approaches that combine histopathological and molecular analyses, so that treatment can be tailored to specific characteristics in tumor cells. As part of this Program, the Neuropathology Core expects to develop such novel diagnostic approaches for a range of childhood brain tumors

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
St. Jude Children's Research Hospital
United States
Zip Code
Eden, C J; Ju, B; Murugesan, M et al. (2015) Orthotopic models of pediatric brain tumors in zebrafish. Oncogene 34:1736-42
Parker, Matthew; Mohankumar, Kumarasamypet M; Punchihewa, Chandanamali et al. (2014) C11orf95-RELA fusions drive oncogenic NF-?B signalling in ependymoma. Nature 506:451-5
Huether, Robert; Dong, Li; Chen, Xiang et al. (2014) The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat Commun 5:3630
Wu, Gang; Diaz, Alexander K; Paugh, Barbara S et al. (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444-50
Katyal, Sachin; Lee, Youngsoo; Nitiss, Karin C et al. (2014) Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci 17:813-21
Diaz, Alexander K; Baker, Suzanne J (2014) The genetic signatures of pediatric high-grade glioma: no longer a one-act play. Semin Radiat Oncol 24:240-7
Northcott, Paul A; Lee, Catherine; Zichner, Thomas et al. (2014) Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511:428-34
Lee, Youngsoo; Brown, Eric J; Chang, Sandy et al. (2014) Pot1a prevents telomere dysfunction and ATM-dependent neuronal loss. J Neurosci 34:7836-44
Morfouace, Marie; Shelat, Anang; Jacus, Megan et al. (2014) Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell 25:516-29
Jones, Chris; Baker, Suzanne J (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer 14:

Showing the most recent 10 out of 97 publications