The long-term goals of this project are to define the role of sphingosine kinase 1 (SK1) as a novel and critical downstream target for the tumor suppressive action of p53, and to establish SK1 as a potential target for cancer therapy, especially in tumors with loss of or mutant p53. p53 and components its pathway have emerged as key tumor suppressors, which are disregulated in the majority of cancers. Targeting this pathway has been difficult due to the nature and function of the involved proteins. Over the last few years, we have begun to uncover a profound and novel connection between p53 and SK1. SK1 is a highly regulated enzyme that plays a critical role in regulating the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P), and in the clearance of ceramide. S1P has emerged as a tumor-promoting sphingolipid with actions on cell growth, angiogenesis and anti-inflammation whereas ceramide has emerged as a tumor suppressor lipid involved in regulation of cell senescence, apoptosis and growth arrest. Thus, SK1, by regulating the interconversion of these two critical bioactive lipids, assumes a central role in tumor biology. In the previous funding period we showed that induction of p53 results in loss of SK1. Moreover in our recently published studies, we demonstrated that this p53-induced loss of SK1 is critical for allowing p53-induced suppression of thymic lymphoma, osteosarcoma, and other cancers as evidenced in studies using the combined p53/SK1 knock-out mice. These ongoing studies provide previously unappreciated, novel and solid connections between p53, SK1, and bioactive sphingolipids, the latter mediating key effects of p53 on tumor suppression. In turn, these studies raise a number of fundamental questions as to the specific effects of p53 on SK1 and on the networks of bioactive sphingolipids: what bioactive lipid mediates what specific p53 responses, and what are the mechanisms involved? These findings have led us to the hypothesis that loss of SK1 is a key event in mediating the tumor suppressor effects of p53. Loss of p53 or its mutation results in persistence of SK1 which then allows tumor development and/or progression. This hypothesis will be investigated by pursuing the following specific aims: 1) To define the mechanisms by which p53 induces loss of SK1. 2) To define the role of bioactive sphingolipids in mediating the effects of p53 on tumor suppression. 3) To establish SK1 as a therapeutic target in p53-mutant cancers. Identifying the mechanisms by which p53 regulates SK1 will not only shed light on this exciting novel connection between the two components, but will also result in the identification of novel therapeutic targets.

Public Health Relevance

The studies proposed in this project aim at defining how an enzyme of lipid (fat) metabolism regulates some key functions of cancer cells that result in the production of factors that regulate the ability of the tumor cells to migrate and invade. These factors also regulate how the host cells respond to the tumor cells. These pathways are turning out to have key functions in the regulation of cancer invasion and metastasis. Understanding these novel pathways and mechanisms not only enhances our understanding of cancer behavior, but also promises to lead us to the identification of novel targets for developing new inhibitors of cancer metastasis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA097132-11A1
Application #
8742659
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (M1))
Project Start
2002-07-01
Project End
2019-08-31
Budget Start
2014-09-22
Budget End
2015-08-31
Support Year
11
Fiscal Year
2014
Total Cost
$221,835
Indirect Cost
$79,747
Name
State University New York Stony Brook
Department
Type
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Adada, Mohamad; Canals, Daniel; Hannun, Yusuf A et al. (2014) Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim Biophys Acta 1841:727-37
Jones, E Ellen; Dworski, Shaalee; Canals, Daniel et al. (2014) On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem 86:8303-11
Jiang, Wenhui; Ogretmen, Besim (2014) Autophagy paradox and ceramide. Biochim Biophys Acta 1841:783-92
Truman, Jean-Philip; García-Barros, Mónica; Obeid, Lina M et al. (2014) Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta 1841:1174-88
Garcia-Barros, Monica; Coant, Nicolas; Truman, Jean-Philip et al. (2014) Sphingolipids in colon cancer. Biochim Biophys Acta 1841:773-82
Boppana, Nithin B; Kodiha, Mohamed; Stochaj, Ursula et al. (2014) Ceramide synthase inhibitor fumonisin B1 inhibits apoptotic cell death in SCC17B human head and neck squamous carcinoma cells after Pc4 photosensitization. Photochem Photobiol Sci 13:1621-7
Perry, David M; Newcomb, Benjamin; Adada, Mohamad et al. (2014) Defining a role for acid sphingomyelinase in the p38/interleukin-6 pathway. J Biol Chem 289:22401-12
Korbelik, Mladen; Banáth, Judit; Sun, Jinghai et al. (2014) Ceramide and sphingosine-1-phosphate act as photodynamic therapy-elicited damage-associated molecular patterns: cell surface exposure. Int Immunopharmacol 20:359-65
Korbelik, Mladen; Zhang, Wei; Saw, Kyi Min et al. (2013) Cationic ceramides and analogues, LCL30 and LCL85, as adjuvants to photodynamic therapy of tumors. J Photochem Photobiol B 126:72-7
Cheng, Joseph C; Bai, Aiping; Beckham, Thomas H et al. (2013) Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest 123:4344-58

Showing the most recent 10 out of 119 publications