The Comparative Pathology Core A will provide centralized pathology support for the three scientific projects and represents an evolution from the Mouse Pathobiology Core from the initial grant cycle. A major goal of the Comparative Pathology Core will be to provide expertise in mouse and human pathology with up-to-date proficiency in mammary gland and breast cancer pathology. In addition, a DVM, PhD postdoc in mouse pathology will perform the mouse necropsies (autopsies), cutting and processing of tissues, and evaluation of histopathology and special stains under the supervision of faculty pathologists. This will ensure excellence and continuity of service for the research projects. The Core will have 6 personnel that include three pathologists (one medical and two veterinary), medical oncologist (breast cancer specialist), a pathology fellow, and part-time histology technician. The Comparative Pathology Core is essential to ensure integration of the specific aims and experiments in relation to translation of the mouse genetic models to human breast cancer. The three pathologists and oncologist have a long track record of working together on collaborative projects, and therefore are well positioned to provide support for Core A. In addition, all three pathologists and the oncologist have collaborated with Drs. Ostrowski and Leone leading to shared authorship on manuscripts with high impact on mammary cancer microenvironment and its relationship to mammary cancer progression (1, 2). Facilities will include four necropsy rooms (including one devoted to mouse pathology), tissue processing facilities, histology laboratory with four full-time technicians (one devoted to the Core) and an automated Dako immunostainer. In Situ Molecular Pathology Core Lab with a Ventana staining system and NUANCE PLUS InForm computer-based analyses of co-expression of molecular targets, microscopy facilities including a 10-headed microscope with video output for conferences, laser capture microdissection facility and staff, tissue microarray laboratory, mouse imaging facilities including high resolution ultrasound, digital gross and microscopic photography, histomorphometry equipment including a fluorescent microscope and Image Pro Plus analysis software, and mouse surgery facilities. A SharePoint website will facilitate data transfer and sharing between the cores and project staff. These faculty and services will provide a unique resource to the research projects and significantly enhance the quality and validity of the research data.

Public Health Relevance

The comparative pathology core serves an integral link in the program grant to facilitate effective translation of molecular and tissue pathology in mouse models of mammary cancer to the pathogenesis and prognosis of breast cancer in women particularly as it relates to epithelial and stromal interactions. The team of veterinary and medical pathologists specialize in mammary cancer and have the laboratory resources and personnel to support the objectives of the core and program grant.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01CA097189-08
Application #
8678860
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
City
Columbus
State
OH
Country
United States
Zip Code
43210
Sizemore, G M; Balakrishnan, S; Hammer, A M et al. (2016) Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. Oncogene :
Kent, Lindsey N; Rakijas, Jessica B; Pandit, Shusil K et al. (2016) E2f8 mediates tumor suppression in postnatal liver development. J Clin Invest 126:2955-69
Chaffee, Blake R; Hoang, Thanh V; Leonard, Melissa R et al. (2016) FGFR and PTEN signaling interact during lens development to regulate cell survival. Dev Biol 410:150-63
Julian, L M; Liu, Y; Pakenham, C A et al. (2016) Tissue-specific targeting of cell fate regulatory genes by E2f factors. Cell Death Differ 23:565-75
Trikha, P; Sharma, N; Pena, C et al. (2016) E2f3 in tumor macrophages promotes lung metastasis. Oncogene 35:3636-46
Liu, Xin; Pitarresi, Jason R; Cuitiño, Maria C et al. (2016) Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia. Genes Dev 30:1943-55
Tang, Xing; Liu, Huayang; Srivastava, Arunima et al. (2016) Transcriptome regulation and chromatin occupancy by E2F3 and MYC in mice. Sci Data 3:160008
Pitarresi, Jason R; Liu, Xin; Sharma, Sudarshana M et al. (2016) Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia. Neoplasia 18:541-52
Wu, L; de Bruin, A; Wang, H et al. (2015) Selective roles of E2Fs for ErbB2- and Myc-mediated mammary tumorigenesis. Oncogene 34:119-28
Cunningham, David; DeBarber, Andrea E; Bir, Natalie et al. (2015) Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development. Hum Mol Genet 24:2808-25

Showing the most recent 10 out of 64 publications