The long-term objective of our research centers on elucidation of the mechanisms whereby critical cell cycle 'regulators contribute to the genesis and progression of neoplastic transformation. Much of our current work focuses on how the contribution of regulated, ubiquitin-dependent destruction of cyclin D1 for normal versus neoplastic growth. The noted overexpression of cyclin D1 in more than 50% of human esophageal cancer highlights the importance of elucidating the mechanisms that regulate cyclin D1 activity in this deadly cancer. While cyclin D1 overexpression is a consequence of gene amplification and chromosome translocation in a subset of cancers, decreased cyclin D1 protein degradation, which depends on its phosphorylation of Thr286, is thought to be the key factor in a majority of esophageal cancers. We have recently identified the SCF(Fbx4-aB crystallin) as the E3 ubiquitin ligase that controls cyclin D1 ubiquitination and degradation. This critical discovery has provided essential information and tools necessary to assess the mechanisms that contribute to regulation of cyclin D1 accumulation during malignant progression. More importantly, our recent discovery of inactivating mutations in Fbx4 in esophageal cancer strongly supports our hypothesis that Fbx4 functions as a novel tumor suppressor gene. The identification of this E3 ligase as well as our recent preliminary studies lead to the overarching hypothesis that the SCF(Fbx4 aB crystallin) ligase via coordinated recognition of phospho-cyclin D1 by Fbx4 and aB crystallin, plays a critical role in the maintenance of esophageal cell proliferation, and trasformation. The hypothesis will be pursued by the (following interrelated Specific Aims: 1) To define the post-translational regulation of cyclin D1 by Fbx4 as it pertains to ligase function, utilizing esophageal cancer derived mutations as a guide;2) To determine the contribution of Fbx4 to esophageal tissue homeostasis and transformation in vivo and in vitro;and 3) To evaluate the role of Fbx4 in maintenance of genomic stability and response of tumor cells to cheomtherapeutic intervention. Project 3 is closely integrated with Project 1 (Aims 1 and 2) and Project 2 (Aim 2), and utilizes all the outstanding cores.

Public Health Relevance

This Project has made fundamental new discoveries in the regulation of cyclin D1, often overexpressed in esophageal squamous cell cancer. To that end, Fbx4, part of the E3 ligase that regulates cyclin D1, is mutated in this cancer. This has applications in molecular-clinical correlations for cancer prognosis, and developing new strategies for controlling cell cycle regulation and DMA damage responses.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Kagawa, S; Natsuizaka, M; Whelan, K A et al. (2015) Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities. Oncogene 34:2347-59
Natsuizaka, Mitsuteru; Kinugasa, Hideaki; Kagawa, Shingo et al. (2014) IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment. Am J Cancer Res 4:29-41
Hong, Yong Sang; Kim, Jihun; Pectasides, Eirini et al. (2014) Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS One 9:e109440
Habibollahi, Peiman; Waldron, Todd; Heidari, Pedram et al. (2014) Fluorescent nanoparticle imaging allows noninvasive evaluation of immune cell modulation in esophageal dysplasia. Mol Imaging 13:1-11
Hartman, Kira G; Bortner Jr, James D; Falk, Gary W et al. (2014) Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems. Exp Biol Med (Maywood) 239:1108-23
Xu, Chunxiao; Fillmore, Christine M; Koyama, Shohei et al. (2014) Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25:590-604
Watanabe, Hideo; Ma, Qiuping; Peng, Shouyong et al. (2014) SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. J Clin Invest 124:1636-45
Wong, Gabrielle S; Habibollahi, Peiman; Heidari, Pedram et al. (2013) Optical imaging of periostin enables early endoscopic detection and characterization of esophageal cancer in mice. Gastroenterology 144:294-7
Desai, Brijal M; Villanueva, Jessie; Nguyen, Thierry-Thien K et al. (2013) The anti-melanoma activity of dinaciclib, a cyclin-dependent kinase inhibitor, is dependent on p53 signaling. PLoS One 8:e59588
Kadaba, Raghu; Birke, Hanna; Wang, Jun et al. (2013) Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. J Pathol 230:107-17

Showing the most recent 10 out of 91 publications