In Project 4 during the previous funding period, specific aims 2 and 3- led to the discovery of an Invasion Signature in rat and mouse mammary tumors. As a result, significant effort was expended to define the particular relevance of the Invasion Signature to the chemotactic migratory behavior of metastatic cancer cells during invasion and intravasation in mouse mammary tumors. We found that the genes coding for pathways leading to the ZBP1/mRNA targeting, cofilin, Mena/capping protein and N-WASP/Arp2/3 pathways, that regulate EMT and beta-actin polymerization during invasion, and the directionality of cell protrusion and contractility during chemotaxis to EGF, are coordinately regulated. Coordinate regulation of these genes is particularly relevant to the contribution of the tumor microenvironment to metastasis because chemotaxis to blood vessels is involved in the escape of cancer cells from primary mammary tumors. The ZBP1, cofilin, Mena and N-WASP pathways, emanating from PI3K, were studied in Project 4, with the help of all Cores, for their ability to alter metastatic outcome and the results confirmed the importance of the Invasion Signature in metastasis in mammary tumors. This confirmation stimulated detailed analysis of these pathways in chemotaxis and invasion of tumor cells and these studies have generated new insights into the molecular mechanisms of chemotaxis during metastasis. The Invasion Signature also contains a metastasis suppressor pathway, the ZBP1/mRNA targeting pathway, which contributes to cadheren junction stability and suppression of EMT. A major insight to emerge from these studies was that PI3K is the starting point from which these pathways emanate indicating its critical importance in tumor cell migration leading to the current Project 4 of this competing renewal. Project 5 also evolved from this work. The theme of Project 5 is to extend the new technologies and findings of the previous funding period in rats and mice to human breast tumors to determine if microenvironments exist in human tumors similar to those discovered in rats and mice during the previous funding period and if they can be used as landmarks in correlation with biomarkers to predict outcome. Combining multiphoton defined landmarks and molecular pathology studies with biomarkers derived from the Invasion Signature of the previous funding period, the prognostic value of master genes will be determined for human breast cancer. In addition, we are interested in determining if an invasion signature exists in humans, that is similar to that in rats and mice, containing master genes that can be used as biomarkers to predict outcome in human patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
United States
Zip Code
Al-Dimassi, Saleh; Salloum, Gilbert; Saykali, Bechara et al. (2016) Targeting the MAP kinase pathway in astrocytoma cells using a recombinant anthrax lethal toxin as a way to inhibit cell motility and invasion. Int J Oncol 48:1913-20
Balsamo, Michele; Mondal, Chandrani; Carmona, Guillaume et al. (2016) The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior. Sci Rep 6:35298
Chitu, Violeta; Gokhan, Şölen; Nandi, Sayan et al. (2016) Emerging Roles for CSF-1 Receptor and its Ligands in the Nervous System. Trends Neurosci 39:378-93
Leung, E; Xue, A; Wang, Y et al. (2016) Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene :
Knutsdottir, Hildur; Condeelis, John S; Palsson, Eirikur (2016) 3-D individual cell based computational modeling of tumor cell-macrophage paracrine signaling mediated by EGF and CSF-1 gradients. Integr Biol (Camb) 8:104-19
Pignatelli, Jeanine; Bravo-Cordero, Jose Javier; Roh-Johnson, Minna et al. (2016) Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/Mena(INV)-initiated invadopodium formation. Sci Rep 6:37874
Wang, Yarong; Wang, Haoxuan; Li, Jiufeng et al. (2016) Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital 5:
Pollard, Jeffrey W (2016) Defining Metastatic Cell Latency. N Engl J Med 375:280-2
Rodriguez-Tirado, Carolina; Kitamura, Takanori; Kato, Yu et al. (2016) Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window. J Vis Exp :
Lewis, Claire E; Harney, Allison S; Pollard, Jeffrey W (2016) The Multifaceted Role of Perivascular Macrophages in Tumors. Cancer Cell 30:18-25

Showing the most recent 10 out of 192 publications