This PPG has documented the existence of a paracrine signaling loop between tumor cells and tumor- associated macrophages (TAMs), in which reciprocal production of EGF and GSF-1 interact with cognate receptors in each cell type to promote invasion and metastasis. Recently, we have uncovered a role for G- protein coupled receptor (GPCR) activation of PI S-kinase (PISK) in the macrophage-tumor cell paracrine loop. We have generated extensive preliminary data implicating GPCR signaling and GPCR-dependent PISKs in both arms of the paracrine loop (macrophage to tumor cell and tumor cell to macrophage). The present proposal will examine the role of GPCR signaling in macrophage-tumor cell interactions.
Aim 1 takes advantage of novel mutants of the two GPCR-regulated PISKs, pHOy and p110(3, which are specifically defective for activation by GPCRs. We will disrupt GPCR-mediated signaling in tumor cells and macrophages by replacing endogenous pHOp/y with these mutants, and then evaluate paracrine signaling between the cells using assays developed by this PPG: SD invasion, intravasation and extravasation in vitro, and Invasion, experimental metastasis, and in vivo motility assays using intravital Imaging in animals.
Aim 2 focuses on the PlSK-dependent phosphorylation of tumor cell Nonmuscle Myosin Heavy Chain-llA (NMHC- llA) S194S, which promotes NMHC-llA disassembly and enhances macrophage-dependent tumor cell invasion. We will directly test whether S194S phosphorylation in tumor cells is regulated by paracrine signals from macrophages. We will express phosphorylation site mutants of NMHC-llA in tumor cells and macrophages, and measure effects on invasion, Intravasation and extravasation in vitro and in vivo. We will use breast tumor reverse phase protein arrays (RPPAs) to determine If increased phospho-NMHC-IIA correlates with metastatic progression in cancer patients, and we will use a high throughput siRNA kinase screen to identify the kinases that directly regulate NMHC-llA phosphorylation in tumor cells. Finally, Aim 3 Is based on data suggesting a role for PISKs and NMHC-llA in the reciprocal stimulation of chemokine secretion by macrophages and tumor cells. We will test whether the expression of mutant PISKs and NMHC- llA alters the secretion of chemokinetic factors by each cell, as well as the related process of MMP trafficking to Invadopodia in tumor cells, and examine the mechanism for these secretory phenotypes. Overall, this proposal will provide important new insights in GPCR regulation of macrophage-tumor cell interactions.

Public Health Relevance

Therapeutic approaches targeting tumor metastasis are a critical priority in current cancer research. Previous work from this program project has shown that interactions between tumor cells and surrounding tissue profoundly influence tumor cell invasion and metastatic spread. This proposal provides new insights into the molecular basis for these interactions, and may lead to the identification of novel therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA100324-11A1
Application #
8669394
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (J1))
Project Start
2003-06-01
Project End
2019-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
11
Fiscal Year
2014
Total Cost
$252,009
Indirect Cost
$101,106
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Khalil, Bassem D; Hanna, Samer; Saykali, Bechara A et al. (2014) The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility. Exp Cell Res 321:109-22
Noy, Roy; Pollard, Jeffrey W (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49-61
Roh-Johnson, M; Bravo-Cordero, J J; Patsialou, A et al. (2014) Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33:4203-12
Bergman, Aviv; Condeelis, John S; Gligorijevic, Bojana (2014) Invadopodia in context. Cell Adh Migr 8:273-9
Zhou, Z N; Sharma, V P; Beaty, B T et al. (2014) Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene 33:3784-93
Weitsman, Gregory; Lawler, Katherine; Kelleher, Muireann T et al. (2014) Imaging tumour heterogeneity of the consequences of a PKC?-substrate interaction in breast cancer patients. Biochem Soc Trans 42:1498-505
Gligorijevic, Bojana; Bergman, Aviv; Condeelis, John (2014) Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol 12:e1001995
Hanna, Samer; Khalil, Bassem; Nasrallah, Anita et al. (2014) StarD13 is a tumor suppressor in breast cancer that regulates cell motility and invasion. Int J Oncol 44:1499-511
Stanley, E Richard; Chitu, Violeta (2014) CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 6:
Rohan, Thomas E; Xue, Xiaonan; Lin, Hung-Mo et al. (2014) Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J Natl Cancer Inst 106:

Showing the most recent 10 out of 127 publications