The long term goal of this project is to define the genetic changes associated with AML relapse/resistance to chemotherapy. This work requires paired samples of de novo and relapsed AML cells that are nearly homogeneous in composition, and tissue culture and mouse models to validate the functional consequences of these genetic changes. The Genomics of AML PPG provides the appropriate infrastructure for this project. We will investigate AML relapse/resistance via the following Specific Aims:
Specific Aim 1 : We will define the genetic changes that occur in murine APL cell lines selected for chemotherapeutic resistance in vitro. We have generated 10 """"""""parental"""""""" murine APL tumor cell lines. We will generate a total of 10 murine APL tumor cell lines and paired subclones that are resistant to daunorubicin (DNR), and/or Ara-C both in vitro and in vivo. Using these well-defined clonal populations of cells, we will perform gene expression profiling and we will define acquired microdeletions and amplifications using array-based comparative genomic hybridization (CGH) with the NimbleGen 2.1M murine oligomer array. Genes that are consistently dysregulated, deleted, or amplified in DNR or Ara-C resistant subclones will be validated with qPCR approaches. Selected genes identified with these array-based genomic screens will be resequenced to define more subtle genetic changes. Functional validation will be performed using forced overexpression and shRNAi knock-down approaches.
Specific Aim 2 : We will define the genetic changes that contribute to AML relapse by comparing the genomes of AML cells obtained at initial presentation vs. first relapse. Because most relapsed samples are not well matched to the paired de novo samples in terms of cellular composition, we will purify AML blasts by sorting """"""""blast gate"""""""" AML cells from the cte novo and relapsed sample pairs for at least 20 AML patients. Using RNA and DMA from these paired, enriched samples, we will perform array based expression profiling and high resolution array based CGH using the 2.1M human oligomer arrays from NimbleGen. The altered genes identified in Aims 1 and 2 will be used to select a subset of target genes for resequencing and biologic validation in the mouse APL model described in Aim 1.
Specific Aim 3 : We will assess the role of the bone marrow microenvironment on AML resistance and relapse. We will use a unique mouse model in which genetically-marked murine APL cells home to and expand in the mouse bone marrow (BM). We will determine whether interruption of the protective AML cell-stromal interaction (using inhibitors of the SDF-1-CXCR4 and the VCAM-1-VLA-4 axes) can sensitize APL cells to chemotherapy in vivo. Finally, we have devised a clinical trial in which we will test the role of a small molecule inhibitor of the CXCR4-SDF-1 axis given immediately prior to salvage chemotherapy in patients with relapsed AML to enhance remission rates and overall survival.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA101937-09
Application #
8375660
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
2012-04-01
Project End
2013-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
9
Fiscal Year
2012
Total Cost
$335,274
Indirect Cost
$95,233
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Fisher, D A C; Malkova, O; Engle, E K et al. (2017) Mass cytometry analysis reveals hyperactive NF Kappa B signaling in myelofibrosis and secondary acute myeloid leukemia. Leukemia 31:1962-1974
Uy, G L; Duncavage, E J; Chang, G S et al. (2017) Dynamic changes in the clonal structure of MDS and AML in response to epigenetic therapy. Leukemia 31:872-881
Cole, Christopher B; Russler-Germain, David A; Ketkar, Shamika et al. (2017) Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies. J Clin Invest 127:3657-3674
Spencer, David H; Russler-Germain, David A; Ketkar, Shamika et al. (2017) CpG Island Hypermethylation Mediated by DNMT3A Is a Consequence of AML Progression. Cell 168:801-816.e13
Bandyopadhyay, Shovik; Li, Junjie; Traer, Elie et al. (2017) Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS One 12:e0179558
Duncavage, Eric J; Uy, Geoffrey L; Petti, Allegra A et al. (2017) Mutational landscape and response are conserved in peripheral blood of AML and MDS patients during decitabine therapy. Blood 129:1397-1401
Shirai, Cara Lunn; White, Brian S; Tripathi, Manorama et al. (2017) Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun 8:14060
Schroeder, Mark A; Choi, Jaebok; Staser, Karl et al. (2017) The Role of Janus Kinase Signaling in Graft-Versus-Host Disease and Graft Versus Leukemia. Biol Blood Marrow Transplant :
Zhang, Jin; Griffith, Malachi; Miller, Christopher A et al. (2017) Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes. Exp Hematol 55:19-33
Ali, Alaa M; Weisel, Daniel; Gao, Feng et al. (2017) Patterns of infectious complications in acute myeloid leukemia and myelodysplastic syndromes patients treated with 10-day decitabine regimen. Cancer Med 6:2814-2821

Showing the most recent 10 out of 113 publications