The main objective of this core Is the enrollment of every patient AML and MDS referred to Washington University into the Tissue Acquisition and Clinical Database protocol ofthe GAML program project. Skin, oral mucosa, bone marrow, peripheral blood leul Specific Aim2 : We will maintain a comprehensive clinical leukemia database that will capture epidemiological data, diseaserelated characteristics, prognostic factors, therapeutic information, and outcomes data from all enrolled AML and MDS patients, with de-identified linkage to corresponding banked tissue specimens.

Public Health Relevance

The specimens collected and the database maintained by Core A are essential to the success of Projects 1- 4 outiined in this proposal. These have served as a unique and invaluable resource both for this Program Project since Its inception, and for extramural projects (TCGA) as well.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA101937-10
Application #
8528766
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (J1))
Project Start
Project End
Budget Start
2013-04-09
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$266,311
Indirect Cost
$104,397
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Al-Hussaini, Muneera; Rettig, Michael P; Ritchey, Julie K et al. (2016) Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 127:122-31
Welch, John S; Petti, Allegra A; Miller, Christopher A et al. (2016) TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med 375:2023-2036
Wong, Terrence N; Miller, Christopher A; Klco, Jeffery M et al. (2016) Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML. Blood 127:893-7
Griffith, Malachi; Griffith, Obi L; Krysiak, Kilannin et al. (2016) Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia. Exp Hematol 44:603-13
Cole, Christopher B; Verdoni, Angela M; Ketkar, Shamika et al. (2016) PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest 126:85-98
Churpek, Jane E; Pyrtel, Khateriaa; Kanchi, Krishna-Latha et al. (2015) Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood 126:2484-90
Wong, Terrence N; Ramsingh, Giridharan; Young, Andrew L et al. (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518:552-5
Engle, E K; Fisher, D A C; Miller, C A et al. (2015) Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia. Leukemia 29:869-76
Griffith, Malachi; Miller, Christopher A; Griffith, Obi L et al. (2015) Optimizing cancer genome sequencing and analysis. Cell Syst 1:210-223
Lu, Charles; Xie, Mingchao; Wendl, Michael C et al. (2015) Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun 6:10086

Showing the most recent 10 out of 98 publications