The Administrative Core A will facilitate interactions between Program members and provide biostatistical support for Projects and Cores. Communication between POI members is critical for success of the Program. Effective communication will promote collaboration and synergy between projects, and accelerate the pace of discovery. Regular internal and external review of scientific progress and evaluation of cores will promote research excellence and ensure that projects are provided with the highest quality services. Application of appropriate statistical tools is essential for rigorous evaluation of hypotheses and for improving experiment design. Functions ofthe Administrative Core include promoting communication and collaboration within the Program by supporting web-based communication between the University of Virginia and the University of Colorado, organizing regular scientific meetings, and providing administrative support to Project Leaders and Core Directors. The Core will also oversee the review of scientific quality and fiscal management of the Projects and Cores. Another key activity of the Core is to provide statistical support and instruction for the Program. This involves assisting in the design and analysis of in vitro and in vivo studies, development and application of novel statistical methodologies in support of emerging Program objectives, and provision of training in statistical methods.

Public Health Relevance

Prostate cancer is the second leading cause of deaths due to cancer in North American men. Our research is designed to explain how prostate cancer progresses to a state that is resistant to current therapies. This knowledge base will enable the design of new therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA104106-08
Application #
8744374
Study Section
Special Emphasis Panel (ZCA1-RPRB-O (J1))
Project Start
2013-09-01
Project End
2016-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
8
Fiscal Year
2013
Total Cost
$187,896
Indirect Cost
$74,706
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Dey, Bijan K; Pfeifer, Karl; Dutta, Anindya (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28:491-501
Yan, Chao; Liu, Degang; Li, Liwei et al. (2014) Discovery and characterization of small molecules that target the GTPase Ral. Nature 515:443-7
Zhang, Y; Kim, J; Mueller, A C et al. (2014) Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma. Cell Death Differ 21:720-34
Negishi, Masamitsu; Wongpalee, Somsakul P; Sarkar, Sukumar et al. (2014) A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins. PLoS One 9:e95216
Kumar, Pankaj; Anaya, Jordan; Mudunuri, Suresh B et al. (2014) Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 12:78
Bettegowda, Chetan; Sausen, Mark; Leary, Rebecca J et al. (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra24
Dancik, Garrett M; Owens, Charles R; Iczkowski, Kenneth A et al. (2014) A cell of origin gene signature indicates human bladder cancer has distinct cellular progenitors. Stem Cells 32:974-82
Nickerson, Michael L; Dancik, Garrett M; Im, Kate M et al. (2014) Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res 20:4935-48
Floyd, Desiree Hunt; Zhang, Ying; Dey, Bijan K et al. (2014) Novel anti-apoptotic microRNAs 582-5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim. PLoS One 9:e96239
Sun, D; Layer, R; Mueller, A C et al. (2014) Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene 33:1448-57

Showing the most recent 10 out of 42 publications