The rapid expansion of tumor cells can result in a microenvironment wherein metabolic nutrients such as glucose, oxygen and growth factors become limiting as cellular volume expands beyond the established vascularity of the tissue. In normal cells, limits in nutrient availability trigger growth arrest and/or apoptosis thereby preventing cellular expansion under such conditions. The goal of this proposal is to determine the role of the endoplasmic reticulum associated kinase, PERK, in the regulation of tumor cell adaptation and tumor growth during conditions of nutrient limitation. Work performed during the previous funding period supports a model wherein PERK-dependent signals prevent the accumulation of reactive oxygen species thereby preventing oxidative damage to tumor cells while simultaneously promoting increased lipid biosynthesis, which is essential for tumor growth. Based on our preliminary data, we hypothesize that PERK, as a sensor of cellular nutrient availability, functions as a critical pro-survival factor via activation of a transcriptional program that promotes cellular adaptation to nutrient restriction thereby facilitating tumor growth and survival. To test this hypothesis, three aims are proposed.
In Aim 1, we will determine whether PERK is required for tumor initiation or tumor maintenance using both cell based approaches as well as animal models. Experiments in Aim 2 will assess the contribution of PERK-dependent regulation of redox homeostasis for tumor growth and survival. In the final aim, Aim 3, we will determine the role of PERK-dependent regulation of lipid biosynthetic pathways to tumor growth and proliferation. There are obvious points of cross-talk between this proposal and Project 1 as we have collaboratively demonstrated that PERK regulates fatty acid and lipid biosynthesis, which is expected to contribute to bioenergetic homeostasis during tumor development;with this project and Project 2 as PERK contributes to cellular homeostasis and redox control in cells experiencing severe hypoxia. Through collaborations facilitated by this program, we will investigate the mechanisms whereby nutrient limitation (Project 2) regulates cellular response to alterations in redox homeostasis using cell culture and animal models. We will investigate how nutrient deprivation (Project 1) impinges upon tumor bioenergetics and lipid production by PERK. The nature of these cooperative efforts will provide information regarding novel regulatory interactions that are subverted during neoplastic progression. The findings that are revealed herein will provide the foundation necessary for the design of novel anti-cancer therapeutics.

Public Health Relevance

Tumor growth depends upon the acquisition of gain of function mutations or subjugation of normal growth and survival pathways. Our long-term goal is to identify pathways essential for tumor growth and survival, but non-essential for normal cell maintenance. Our preliminary work suggests that the PERK protein kinase functions in such a pathway and thus may represent a novel therapeutic target.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA104838-10
Application #
8539279
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$356,256
Indirect Cost
$131,180
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Rozpedek, W; Pytel, D; Mucha, B et al. (2016) The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Curr Mol Med 16:533-44
Krishna, Shefali; Palm, Wilhelm; Lee, Yongchan et al. (2016) PIKfyve Regulates Vacuole Maturation and Nutrient Recovery following Engulfment. Dev Cell 38:536-47
Tschaharganeh, Darjus F; Lowe, Scott W; Garippa, Ralph J et al. (2016) Using CRISPR/Cas to study gene function and model disease in vivo. FEBS J 283:3194-203
Pavlova, Natalya N; Thompson, Craig B (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metab 23:27-47
Xu, Zhenhua; Bu, Yiwen; Chitnis, Nilesh et al. (2016) miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun 7:11422
Pytel, D; Majsterek, I; Diehl, J A (2016) Tumor progression and the different faces of the PERK kinase. Oncogene 35:1207-15
Gade, Terence P F; Hunt, Stephen J; Harrison, Neil et al. (2015) Segmental Transarterial Embolization in a Translational Rat Model of Hepatocellular Carcinoma. J Vasc Interv Radiol 26:1229-37
Qiu, Bo; Ackerman, Daniel; Sanchez, Danielle J et al. (2015) HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer Discov 5:652-67
Ye, Jiangbin; Palm, Wilhelm; Peng, Min et al. (2015) GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev 29:2331-6
Mucaj, V; Lee, S S; Skuli, N et al. (2015) MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma. Oncogene 34:2204-14

Showing the most recent 10 out of 93 publications