The long-temri objective of this research project is to define the molecular basis of polycythemia vera (PV). PV represents the ultimate phenotype of the mutant kinase, JAK2 V617F, through its effects on committed hematopoietic progenitor cells but we hypothesize that while JAK2 V617F expression is responsible for the clinical phenotype of PV, the underlying molecular mechanisms responsible for the disease reside in the hematopoietic stem cell (HSC), which does not require JAK2, and that the thrombopoietin (TPO) receptor, Mpl, is integrally Involved In these mechanisms. This hypothesis, which is based on our discovery of impaired Mpl expression in PV with an attendant increase in plasma TPO, and our observation that absence of the MPL gene abrogated the PV phenotype in a JAK2 V617F transgenic (tg) mouse model of PV, provides a mechanistic basis for understanding the pathophysiology of PV at the stem cell level and a rational approach to therapy To this end, we propose to use genetic techniques to dissect the influence of the MPL:TPO axis, and also the roles of specific genes up regulated in human PV CD34+ cells, on the behavior of HSC in the murine JAK2 V617F tg model of PV.
In Specific Aim 1, we will examine the effect of abrogation of the TPO gene on the phenotype of the JAK2 V617F tg mouse, on the size of its HSC pool and the HSC gene expression profile, by breeding with a TPO-/- mouse. Control experiments will employ mice in which Mpl function was abrogated by a point mutation or a gene knockout independent of MPL that impairs platelet production, while a neutralizing Mpl antiserum will be examined as a model of targeted therapy.
In Specific Aim 2, we will create a tg mouse expressing a PV Mpl splice variant and assess its phenotype in the presence and absence of JAK2 V617F. We also examine by crossbreeding, the effect of knocking out SPARC or LCN2, two genes that are up regulated in PV, on the phenotype of the JAK2 V617F tg mouse. Finally, in Specific Aim 3, we will use xenotranslantation in NOG mice to examine the in vivo behavior of genetically-defined PV CD34 + cells from clinically distinct PV patient populations that we have identified by gene expression profiling and unsuoervised hierarchical clustering.

Public Health Relevance

Polycythemia vera (PV) is a hematopoietic stem cell (HSC) disorder in which there is overproduction of blood cells, leading to thrombosis, marrow fibrosis, splenic enlargement and acute leukemia, at varying frequencies. We propose to define the mechanisms causing PV by focusing on the behavior of genes required by PV HSC for their survival and function, inhibition of which could provide the basis for targeted therapy in this disorder.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
New York
United States
Zip Code
Wang, Xiaoli; Cho, Sool Yeon; Hu, Cing Siang et al. (2015) C-X-C motif chemokine 12 influences the development of extramedullary hematopoiesis in the spleens of myelofibrosis patients. Exp Hematol 43:100-9.e1
Wehrle, Julius; Pahl, Heike L; von Bubnoff, Nikolas (2014) Ponatinib: a third-generation inhibitor for the treatment of CML. Recent Results Cancer Res 201:99-107
Spivak, Jerry L; Considine, Michael; Williams, Donna M et al. (2014) Two clinical phenotypes in polycythemia vera. N Engl J Med 371:808-17
Dickinson, Rachel E; Milne, Paul; Jardine, Laura et al. (2014) The evolution of cellular deficiency in GATA2 mutation. Blood 123:863-74
Rondelli, Damiano; Goldberg, Judith D; Isola, Luis et al. (2014) MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood 124:1183-91
Rheinemann, Lara; Seeger, Thalia S; Wehrle, Julius et al. (2014) NFE2 regulates transcription of multiple enzymes in the heme biosynthesis pathway. Haematologica 99:e208-10
Kapralova, Katarina; Lanikova, Lucie; Lorenzo, Felipe et al. (2014) RUNX1 and NF-E2 upregulation is not specific for MPNs, but is seen in polycythemic disorders with augmented HIF signaling. Blood 123:391-4
Wang, L; Swierczek, S I; Drummond, J et al. (2014) Whole-exome sequencing of polycythemia vera revealed novel driver genes and somatic mutation shared by T cells and granulocytes. Leukemia 28:935-8
Ye, Zhaohui; Liu, Cyndi F; Lanikova, Lucie et al. (2014) Differential sensitivity to JAK inhibitory drugs by isogenic human erythroblasts and hematopoietic progenitors generated from patient-specific induced pluripotent stem cells. Stem Cells 32:269-78
Essig, Aitomi; Duque-Afonso, Jesus; Schwemmers, Sven et al. (2014) The AML1/ETO target gene LAT2 interferes with differentiation of normal hematopoietic precursor cells. Leuk Res 38:340-5

Showing the most recent 10 out of 116 publications