Gastric adenocarcinoma is the second leading cause of cancer-related death in the world. H. pylori is the strongest known risk factor for this malignancy, yet only a fraction of infected persons ever develop cancer. One H. pylori determinant that augments cancer risk is the cag pathogenicity island, and several cag genes encode components of a type IV bacterial secretion system which functions to export proteins (e.g., CagA) nto host epithelial cells. A host effector that may influence carcinogenesis is li-catenin, a downstream component of the Wnt pathway. When Wnt signaling is inactive, (l-catenin is constitutively phosphorylated and degraded;binding of Wnt to its receptor inhibits G-catenin phosphorylation, leading to its nuclear accumulation and the transcriptional activation of genes that influence carcinogenesis. Nuclear accumulation of fi-catenin is increased in gastric adenoma and dysplasia specimens, histologic stages that precede gastric adenocarcinoma. Our preliminary studies now demonstrate that a rodent-adapted H. pylori ?ag+ strain (7.13) rapidly induces gastric cancer in hypergastrinemic (INS-GAS) mice by 24 weeks and in Vlongolian gerbils by 4 weeks and that strain 7.13 induces nuclear translocation of G-catenin and activates a B-catenin-responsive reporter in vitro, indicating that li-catenin is functionally responsive to this prototype strain. IS-catenin activation by H. pylori is dependent upon translocation of CagA into epithelial cells, and nuclear accumulation of U-catenin is increased in gastric epithelium harvested from cag+-infected persons, compared to subjects carrying cag strains or uninfected persons. Our hypothesis is that H. pylori cag* strains selectively activate host signaling pathways, such as those mediated by R-catenin, thereby regulating cellular responses that contribute to the augmentation in carcinogenic risk associated with these strains. Thus, our specific aims are: 1. To define the effects of H. pylori constituents on activation of S-catenin in vitro and in vivo. 2. To determine the eukaryotic signaling pathways that regulate H. py/or/-induced fi-catenin activation. 3. To define differences in epithelial molecular responses to carcinogenic H. pylori versus mutant strains using a transgenic murine model of gastric cancer.

Public Health Relevance

These studies will define bacterial and host factors that influence gastric cancer. Such findings may help to identify H. pylori infected persons at high risk for gastric cancer, who thereby warrant therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA116087-05
Application #
8413057
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
2013-01-01
Project End
2013-12-31
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
5
Fiscal Year
2013
Total Cost
$231,333
Indirect Cost
$72,764
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Chaturvedi, R; de Sablet, T; Asim, M et al. (2015) Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene 34:3429-40
Krakowiak, M S; Noto, J M; Piazuelo, M B et al. (2015) Matrix metalloproteinase 7 restrains Helicobacter pylori-induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization. Oncogene 34:1865-71
Wei, Jinxiong; Noto, Jennifer M; Zaika, Elena et al. (2015) Bacterial CagA protein induces degradation of p53 protein in a p14ARF-dependent manner. Gut 64:1040-8
Wroblewski, Lydia E; Piazuelo, M Blanca; Chaturvedi, Rupesh et al. (2015) Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64:720-30
Gobert, Alain P; Verriere, Thomas; Asim, Mohammad et al. (2014) Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. J Immunol 193:3013-22
Wang, Dingzhi; Fu, Lingchen; Ning, Wei et al. (2014) Peroxisome proliferator-activated receptor ? promotes colonic inflammation and tumor growth. Proc Natl Acad Sci U S A 111:7084-9
Chaturvedi, Rupesh; Asim, Mohammad; Barry, Daniel P et al. (2014) Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine. Amino Acids 46:531-42
Kodaman, Nuri; Pazos, Alvaro; Schneider, Barbara G et al. (2014) Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proc Natl Acad Sci U S A 111:1455-60
Abreu, Maria T; Peek Jr, Richard M (2014) Gastrointestinal malignancy and the microbiome. Gastroenterology 146:1534-1546.e3
Van Kaer, Luc; Algood, Holly M Scott; Singh, Kshipra et al. (2014) CD8??? innate-type lymphocytes in the intestinal epithelium mediate mucosal immunity. Immunity 41:451-64

Showing the most recent 10 out of 86 publications