H. py/or/-induced gastric tumorigenesis is associated with dysregulation of gastric epithelial apoptosis and aroliferation;yet, the mechanisms that govern these cellular responses are unclear. H. pylori induces gastric epithelial cell activation of epidermal growth factor receptor (EGFR) and a downstream target, ERK1/2. These signaling pathways regulate cellular proliferation and survival programs implicated in tumorigenesis in other systems and our data now indicate that H. pylori activation of EGFR attenuates apoptosis. Our preliminary findings also show that a disintegrin and metalloproteinase- (ADAM-) 17 expression is required for EGFR transactivation by H. pylori and that activation of EGFR mediates H. py/ori-induced oxidative stress through up-regulation of spermine oxidase (SMO). Therefore, we hypothesize that transactivation of EGFR is a key molecular regulatory step in the pathogenesis of H. py/ori-mediated tumorigenesis, initiating anti-apoptotic responses that heighten the retention of cells mutagenized by this pathogen.
Three Specific Aims are designed to achieve this goal: 1. Determine the mechanism of activation of EGFR and the molecular interactions regulated by H. pylori. We will focus on the requirement of ADAM- 17 for EGFR activation using ADAM-17 knockout and add-back cell lines and specific inhibitors. EGFR interacting proteins will be precipitated with Flag-EGFR and identified by MALDI-TOF analysis. 2. Define the contribution of EGFR transactivation and identify downstream targets in H. py/or/-mediated gastric epithelial cell DMA damage. We will assess the role of SMO as a downstream target of EGFR transactivation, determine oxidative injury and DMA damage, and use 2D-DIGE to identify downstream targets of H. py/or/'-mediated EGFR transactivation. 3. Determine the effects of EGFR transactivation on H. py/or/-mediated gastric epithelial cell DMA damage, apoptosis, proliferation, and tumorigenesis in vivo. Proliferation, apoptosis, stress responses, and cancer precursor lesions will be analyzed in H. pyloriinfected wild-type and EGFR-defective mice. The significance of this research is to determine the molecular mechanism(s) of H. py/or/-mediated gastric epithelial cell survival within the context of mutagenesis pathways leading to gastric tumorigenesis, which is important for identifying novel therapeutic targets for H. py/ori-mediated diseases. Furthermore, these mechanisms may be implicated in a number of inflammationassociated intestinal disorders resulting from altered programs of cellular proliferation and apoptosis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA116087-05
Application #
8413058
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
2013-01-01
Project End
2013-12-31
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
5
Fiscal Year
2013
Total Cost
$278,594
Indirect Cost
$72,764
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Singh, Kshipra; Coburn, Lori A; Asim, Mohammad et al. (2018) Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 78:4303-4315
Corley, Douglas A; Peek Jr, Richard M (2018) When Should Guidelines Change? A Clarion Call for Evidence Regarding the Benefits and Risks of Screening for Colorectal Cancer at Earlier Ages. Gastroenterology 155:947-949
Gobert, Alain P; Al-Greene, Nicole T; Singh, Kshipra et al. (2018) Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection. Front Immunol 9:1242
Raghunathan, Krishnan; Foegeding, Nora J; Campbell, Anne M et al. (2018) Determinants of Raft Partitioning of the Helicobacter pylori Pore-Forming Toxin VacA. Infect Immun 86:
Scoville, Elizabeth A; Allaman, Margaret M; Brown, Caroline T et al. (2018) Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn's Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 14:
Sierra, Johanna C; Asim, Mohammad; Verriere, Thomas G et al. (2018) Epidermal growth factor receptor inhibition downregulates Helicobacter pylori-induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut 67:1247-1260
Blosse, Alice; Lehours, Philippe; Wilson, Keith T et al. (2018) Helicobacter: Inflammation, immunology, and vaccines. Helicobacter 23 Suppl 1:e12517
Coburn, Lori A; Singh, Kshipra; Asim, Mohammad et al. (2018) Loss of solute carrier family 7 member 2 exacerbates inflammation-associated colon tumorigenesis. Oncogene :
Loh, John T; Beckett, Amber C; Scholz, Matthew B et al. (2018) High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 86:
Noto, Jennifer M; Chopra, Abha; Loh, John T et al. (2018) Pan-genomic analyses identify key Helicobacter pylori pathogenic loci modified by carcinogenic host microenvironments. Gut 67:1793-1804

Showing the most recent 10 out of 203 publications