Mutations that result in constitutively active K-RAS are found in over 95% of PDACs and are believed to be an initiating event for this type of cancer. Despite the high frequency of K-RAS mutations in PDAC and other cancers, efforts to date to develop therapies directed against the oncoprotein have failed. This failure has led to a focus on the effector pathways controlled by K-RAS as possible therapeutic targets (see Project 2). Project 3 is based on an alternative strategy for inhibiting the growth of K-RAS-mutant cells, which is rooted in recent success of our group and others in identifying so-called "K-RAS synthetic lethal genes". Several such genes have been identified through RNAi screens and other strategies as being required selectively In K-RAS mutant cancer cells. However, none of these genes have been adequately examined in vivo as potential tumor maintenance genes and none have been validated in the context of P DAC.
In Aim 1 of Project 3, we will use RNAi and biochemical methods to investigate the effects of inhibiting four candidate synthetic lethal genes/pathways?STK33, TBK1, NF-{K}B, and the M2 isoform of the pyruvate kinase gene (PK-M2)?in PDAC-derived cell lines of mouse and human origin.
In Aim 2, we will create a novel mouse model of PDAC that will allow for the assessment of these and other candidate tumor maintenance genes in the context of established PDAC. Using a combination of conditional alleles controlled by two site-specific recombinases (Cre and Flp), this model will allow for conditional activation of K-RAS (with or without accompanying mutation In p53) to promote PDAC development, followed by conditional inactivation of the gene of interest. This system will be deployed first to test the consequences of inhibiting Stk33, Tbk1 or PK-M2 In established, autochthonous tumors. Additional potential tumor maintenance genes identified in this project and other projects in this PO1 will be tested In the future.
In Aim 3, we will use the systems developed In Aim 1 to conduct a broader screen of candidate synthetic lethal genes that might be useful in the development of therapies for PDAC. These data will tie used to prioritize genes that will be further tested in the in vivo system developed in Aim 2.

Public Health Relevance

Pancreatic ductal adenocarcinoma (PDAC) is a major unsolved health problem. Worldwide, over 213,000 patients will develop pancreatic cancer in 2009, and nearly all will die of their disease. Our work will result in the identification of novel targets in adenocarcinoma maintenance, in settings that closely resemble the human disease. Our research will ultimately allow testing the effects of putative small-molecule inhibitors of these novel targets in our mouse models, both on the tumor and on the normal tissue.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA117969-09
Application #
8603769
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
9
Fiscal Year
2014
Total Cost
$301,080
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Kapoor, Avnish; Yao, Wantong; Ying, Haoqiang et al. (2014) Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158:185-97
Sahora, Klaus; Fernández-del Castillo, Carlos; Dong, Fei et al. (2014) Not all mixed-type intraductal papillary mucinous neoplasms behave like main-duct lesions: implications of minimal involvement of the main pancreatic duct. Surgery 156:611-21
Mayers, Jared R; Wu, Chen; Clish, Clary B et al. (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20:1193-8
Lee, John J; Perera, Rushika M; Wang, Huaijun et al. (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 111:E3091-100
Deschênes-Simard, Xavier; Lessard, Frédéric; Gaumont-Leclerc, Marie-France et al. (2014) Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 13:1840-58
Daver, Naval; Shastri, Aditi; Kadia, Tapan et al. (2014) Phase II study of pomalidomide in combination with prednisone in patients with myelofibrosis and significant anemia. Leuk Res 38:1126-9
Viale, Andrea; Pettazzoni, Piergiorgio; Lyssiotis, Costas A et al. (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628-32
Lyssiotis, Costas A; Cantley, Lewis C (2014) Targeting metabolic scavenging in pancreatic cancer. Clin Cancer Res 20:6-8
Commisso, Cosimo; Davidson, Shawn M; Soydaner-Azeloglu, Rengin G et al. (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633-7
Lyssiotis, Costas A; Son, Jaekyoung; Cantley, Lewis C et al. (2013) Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 12:1987-8

Showing the most recent 10 out of 48 publications