Mutations that result in constitutively active K-RAS are found in over 95% of PDACs and are believed to be an initiating event for this type of cancer. Despite the high frequency of K-RAS mutations in PDAC and other cancers, efforts to date to develop therapies directed against the oncoprotein have failed. This failure has led to a focus on the effector pathways controlled by K-RAS as possible therapeutic targets (see Project 2). Project 3 is based on an alternative strategy for inhibiting the growth of K-RAS-mutant cells, which is rooted in recent success of our group and others in identifying so-called """"""""K-RAS synthetic lethal genes"""""""". Several such genes have been identified through RNAi screens and other strategies as being required selectively In K-RAS mutant cancer cells. However, none of these genes have been adequately examined in vivo as potential tumor maintenance genes and none have been validated in the context of P DAC.
In Aim 1 of Project 3, we will use RNAi and biochemical methods to investigate the effects of inhibiting four candidate synthetic lethal genes/pathways?STK33, TBK1, NF-{K}B, and the M2 isoform of the pyruvate kinase gene (PK-M2)?in PDAC-derived cell lines of mouse and human origin.
In Aim 2, we will create a novel mouse model of PDAC that will allow for the assessment of these and other candidate tumor maintenance genes in the context of established PDAC. Using a combination of conditional alleles controlled by two site-specific recombinases (Cre and Flp), this model will allow for conditional activation of K-RAS (with or without accompanying mutation In p53) to promote PDAC development, followed by conditional inactivation of the gene of interest. This system will be deployed first to test the consequences of inhibiting Stk33, Tbk1 or PK-M2 In established, autochthonous tumors. Additional potential tumor maintenance genes identified in this project and other projects in this PO1 will be tested In the future.
In Aim 3, we will use the systems developed In Aim 1 to conduct a broader screen of candidate synthetic lethal genes that might be useful in the development of therapies for PDAC. These data will tie used to prioritize genes that will be further tested in the in vivo system developed in Aim 2.

Public Health Relevance

Pancreatic ductal adenocarcinoma (PDAC) is a major unsolved health problem. Worldwide, over 213,000 patients will develop pancreatic cancer in 2009, and nearly all will die of their disease. Our work will result in the identification of novel targets in adenocarcinoma maintenance, in settings that closely resemble the human disease. Our research will ultimately allow testing the effects of putative small-molecule inhibitors of these novel targets in our mouse models, both on the tumor and on the normal tissue.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Mullarky, Edouard; Lairson, Luke L; Cantley, Lewis C et al. (2016) A novel small-molecule inhibitor of 3-phosphoglycerate dehydrogenase. Mol Cell Oncol 3:e1164280
Saung, May Tun; Sharei, Armon; Adalsteinsson, Viktor A et al. (2016) A Size-Selective Intracellular Delivery Platform. Small :
Kugel, Sita; Sebastián, Carlos; Fitamant, Julien et al. (2016) SIRT6 Suppresses Pancreatic Cancer through Control of Lin28b. Cell 165:1401-15
Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu et al. (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536:479-83
Mullarky, Edouard; Lucki, Natasha C; Beheshti Zavareh, Reza et al. (2016) Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc Natl Acad Sci U S A 113:1778-83
Huang, Yinshi; Nahar, Sabikun; Nakagawa, Akifumi et al. (2016) Regulation of GLI Underlies a Role for BET Bromodomains in Pancreatic Cancer Growth and the Tumor Microenvironment. Clin Cancer Res 22:4259-70
Ying, Haoqiang; Dey, Prasenjit; Yao, Wantong et al. (2016) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 30:355-85
Dayton, Talya L; Gocheva, Vasilena; Miller, Kathryn M et al. (2016) Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev 30:1020-33
Tummala, Krishna S; Kottakis, Filippos; Bardeesy, Nabeel (2016) NRF2: Translating the Redox Code. Trends Mol Med 22:829-831
Chakrabarti, Gaurab; Moore, Zachary R; Luo, Xiuquan et al. (2015) Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer Metab 3:12

Showing the most recent 10 out of 103 publications