The construction and phenotypic analysis of genetically engineered mouse (GEM) strains are fundamental and integral for the study of pancreatic cancer, including the analysis of signaling molecules in this pathology, the discovery and analysis of novel genes and their linked networks, and the validation and assessment of novel therapeutic targets and associated molecular biomarkers. The Genetic Engineering Mouse Core (GEMC) of this PDAC POI will provide all the necessary expertise, reagents and services to generate four genetically engineered mouse (GEM) modeling projects per year of grant funding. The GEMC will work closely with POI project leaders, investigators to produce the most advanced cancer relevant GEM strains. Specifically: (A) Transgenics;the GEMC will support all aspects of the construction of transgenic mouse models, including advice, service, technologies and reagents for the optimal design and construction of each specific transgene. (B) Gene Targeting;We will support all aspects of the construction of knockout and knock-in mouse alleles, including provide services, support, advice, technologies and reagents for the optimal design, construction and production of each specific targeting vector and resulting mice. (C) Evaluate and implement new technologies for the construction of genetically engineered mice and derivative cells.

Public Health Relevance

The laboratory mouse has been a central player in aging research. Particularly over the past two decades, numerous laboratories have used the techniques of transgenesis and gene targeting to create novel mouse strains to study pancreatic cancer. The analysis of these strains has led to an improved understanding of the genes involved cancer, cancer related pathological progression, and many other aspects of the oncogenic process that can only be studied in the context of the whole animal. With more genes, more powerful methods of genetic manipulation and greater insight into cancer biology on the molecular and cellular level, the goal to create genetically accurate models of cancer relevant pathologies and processes in the mouse is being realized.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Biancur, Douglas E; Paulo, Joao A; Ma?achowska, Beata et al. (2017) Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun 8:15965
Ravez, Séverine; Corbet, Cyril; Spillier, Quentin et al. (2017) ?-Ketothioamide Derivatives: A Promising Tool to Interrogate Phosphoglycerate Dehydrogenase (PHGDH). J Med Chem 60:1591-1597
Nejati, Reza; Goldstein, Jennifer B; Halperin, Daniel M et al. (2017) Prognostic Significance of Tumor-Infiltrating Lymphocytes in Patients With Pancreatic Ductal Adenocarcinoma Treated With Neoadjuvant Chemotherapy. Pancreas 46:1180-1187
Cancer Genome Atlas Research Network. Electronic address:; Cancer Genome Atlas Research Network (2017) Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 32:185-203.e13
Lu, Xin; Horner, James W; Paul, Erin et al. (2017) Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543:728-732
Lyssiotis, Costas A; Kimmelman, Alec C (2017) Metabolic Interactions in the Tumor Microenvironment. Trends Cell Biol 27:863-875
Pergolini, Ilaria; Morales-Oyarvide, Vicente; Mino-Kenudson, Mari et al. (2017) Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLoS One 12:e0182855
Sherman, Mara H; Yu, Ruth T; Tseng, Tiffany W et al. (2017) Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci U S A 114:1129-1134
Shukla, Surendra K; Purohit, Vinee; Mehla, Kamiya et al. (2017) MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 32:71-87.e7
Dey, Prasenjit; Baddour, Joelle; Muller, Florian et al. (2017) Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature 542:119-123

Showing the most recent 10 out of 121 publications