The long-term objective of this study is to identify biochemical pathways that can be used to diagnose and treat human cancers. This study will focus on central carbon metabolism, a process including the uptake and usage of glucose for energy production, cellular biosynthesis, and cell reproduction. Specifically, the work will center on cells in which the tumor suppresser PTEN is inactivated. Since PTEN is frequently inactivated in cancers, including those of the breast, prostate, ovary, endometrium and skin, the work will be relevant to a wide range of human cancers. The study seeks to test the hypothesis that inactivation of PTEN is associated with significant changes in central metabolism, and that some of these metabolic pathways may be exploited as therapeutic and prognostic targets in human cancers. Our preliminary results point to PTEN-dependent changes in metabolic flux in melanoma cells. To test this hypothesis the Specific Aims are to address the following questions using melanoma cell systems as a model: 1) What are the differences in central carbon metabolism in PTEN* and PTEN inactive tumors? 2) What metabolic pathways can be exploited as drug targets in PTEN inactive melanomas? 3) What are the effects of drugs on central metabolism in PTEN* and PTEN inactive melanoma cells? 4) Can we identify subsets of PTEN inactive tumors that are highly responsive to a metabolic blockade? The prinriary approach for the study is an analysis of carbon flux through central metabolism using 2D HSQC NMR. Flux through glycolysis, the pentose phosphate pathway, the TCA cycle, and fatty acid biosynthesis, will be quantified and compared under a number of conditions that are known to alter the function of the PTEN pathway. The studies will also define the concentrations of more then twenty key metabolites. Altogether the information gained form this work should provide an understanding how the mechanistic connections occur between PTEN/PI3K/Akt and central metabolism. It is anticipated that the work will also reveal new diagnostic and therapeutic targets.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sanford-Burnham Medical Research Institute
La Jolla
United States
Zip Code
Maruyama, Takeshi; Araki, Toshihiro; Kawarazaki, Yosuke et al. (2014) Roquin-2 promotes ubiquitin-mediated degradation of ASK1 to regulate stress responses. Sci Signal 7:ra8
Kim, H; Claps, G; Moller, A et al. (2014) Siah2 regulates tight junction integrity and cell polarity through control of ASPP2 stability. Oncogene 33:2004-10
Scortegagna, Marzia; Kim, Hyungsoo; Li, Jian-Liang et al. (2014) Fine tuning of the UPR by the ubiquitin ligases Siah1/2. PLoS Genet 10:e1004348
Qi, Jianfei; Kim, Hyungsoo; Scortegagna, Marzia et al. (2013) Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys 67:15-24
Feng, Yongmei; Lau, Eric; Scortegagna, Marzia et al. (2013) Inhibition of melanoma development in the Nras((Q61K)) ::Ink4a(-/-) mouse model by the small molecule BI-69A11. Pigment Cell Melanoma Res 26:136-42
Barile, Elisa; De, Surya K; Feng, Yongmei et al. (2013) Synthesis and SAR studies of dual AKT/NF-*B inhibitors against melanoma. Chem Biol Drug Des 82:520-33
Stebbins, John L; Santelli, Eugenio; Feng, Yongmei et al. (2013) Structure-based design of covalent Siah inhibitors. Chem Biol 20:973-82
Filipp, Fabian V; Scott, David A; Ronai, Ze'ev A et al. (2012) Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell Melanoma Res 25:375-83
Feng, Yongmei; Barile, Elisa; De, Surya K et al. (2011) Effective inhibition of melanoma by BI-69A11 is mediated by dual targeting of the AKT and NF-*B pathways. Pigment Cell Melanoma Res 24:703-13
Scott, David A; Richardson, Adam D; Filipp, Fabian V et al. (2011) Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J Biol Chem 286:42626-34

Showing the most recent 10 out of 18 publications