Despite decades of empiric research, lung adenocarcinoma remains America's leading cancer killer, with 86,000 deaths this year. Although tumor specimens from patients with this illness have a similar morphologic appearance, outcomes and sensitivity to treatment vary widely. Since molecular events underlie clinical observations, we hypothesize that unraveling mechanisms of lung adenocarcinoma maintenance, metastasis, and response to therapy will lead to the identification of therapeutic targets for the illness and for individual patients. Our experience in developing EGFR tyrosine kinase inhibitors (TKIs), and in the discovery that mutations in EGFR and KRAS genes underlie sensitivity and resistance to these agents, has demonstrated the practicality and potential of this approach. We propose 4 research projects and 3 core facilities all utilizing the same iterative research process uniting clinical and laboratory observations that have linked mutations in tumors to improved outcomes in patients. This grant embraces new investigators, technologies, and pathways. A specific clinical question focuses each project that proposes to identify targets for therapies in lung adenocarcinoma. RP1 proposes to find a gene signature responsible for brain metastases. These genes will serve as targets for intervention. RP2 attacks the problem of TKI-resistant, KRAS-driven tumors by determining their dependence on the downstream and parallel effectors BRAF, MEK/MAPK, and PIK3CA, which also represent targets for therapy. RP3 addresses the problem of EGFR-mutant cancers that persist despite TKI treatment. RP3 determines the """"""""fate"""""""" of TKI-sensitive cells and elucidates mechanisms of survival and death of these malignant cells that can serve as targets for therapy. RP4 uses high throughput screening to discover therapeutic targets in KRAS- and EGFR-dependent cells. RP4 will also study the repertoire of proteins that interact with mutant and wild-type EGFR to identify additional targets. Our Molecular Profiling &Pathology Core A leverages years of experience in specimen collection, precise pathologic characterization in mouse and annotated human samples, mutation testing, and gene profiling in lung adenocarcinoma to enrich and support each project. The Information Engineering Core B and Administration &Analysis Core C will unify information storage and sharing, biostatistical analyses, and organization across the P01. They support the Executive and Advisory Committees to ensure rigorous scientific review, continuous reassessment of priorities, and rapid dissemination of our findings.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA129243-05
Application #
8120228
Study Section
Special Emphasis Panel (ZCA1-GRB-P (M1))
Program Officer
Arya, Suresh
Project Start
2007-07-23
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
5
Fiscal Year
2011
Total Cost
$1,813,235
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Yu, Helena A; Perez, Leslie; Chang, Qing et al. (2017) A Phase 1/2 Trial of Ruxolitinib and Erlotinib in Patients with EGFR-Mutant Lung Adenocarcinomas with Acquired Resistance to Erlotinib. J Thorac Oncol 12:102-109
Ichihara, Eiki; Westover, David; Meador, Catherine B et al. (2017) SFK/FAK Signaling Attenuates Osimertinib Efficacy in Both Drug-Sensitive and Drug-Resistant Models of EGFR-Mutant Lung Cancer. Cancer Res 77:2990-3000
Yaeger, Rona; Yao, Zhan; Hyman, David M et al. (2017) Mechanisms of Acquired Resistance to BRAF V600E Inhibition in Colon Cancers Converge on RAF Dimerization and Are Sensitive to Its Inhibition. Cancer Res 77:6513-6523
Weigelt, Britta; Comino-Méndez, Iñaki; de Bruijn, Ino et al. (2017) Diverse BRCA1 and BRCA2 Reversion Mutations in Circulating Cell-Free DNA of Therapy-Resistant Breast or Ovarian Cancer. Clin Cancer Res 23:6708-6720
Pal, Debjani; Pertot, Anja; Shirole, Nitin H et al. (2017) TGF-? reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. Elife 6:
Yu, H A; Sima, C; Feldman, D et al. (2017) Phase 1 study of twice weekly pulse dose and daily low-dose erlotinib as initial treatment for patients with EGFR-mutant lung cancers. Ann Oncol 28:278-284
Boire, Adrienne; Zou, Yilong; Shieh, Jason et al. (2017) Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell 168:1101-1113.e13
Nieto, Patricia; Ambrogio, Chiara; Esteban-Burgos, Laura et al. (2017) A Braf kinase-inactive mutant induces lung adenocarcinoma. Nature 548:239-243
Yao, Zhan; Yaeger, Rona; Rodrik-Outmezguine, Vanessa S et al. (2017) Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature 548:234-238
Drilon, Alexander; Somwar, Romel; Wagner, Jacob P et al. (2016) A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res 22:2351-8

Showing the most recent 10 out of 168 publications