Genetic engineering of lymphocytes to express a transgenic T ceil receptor (TCR) specific for a defined melanoma antigen allows the efficient generation of large populations of antigen-specific T cells suitable for T cell adoptive immunotherapy. These engineered cells can be additionally genetically labeled with a positron emitting tomography (PET) reporter gene to allow the non-invasive study of the in vivo kinetics of antitumor T cell responses. In this second revised project we propose a clinical trial incorporating advances from our ongoing preclinical studies. We propose to deplete CD25+ cells (including natural T regulatory -nTreg- cells) before activation and to transduce peripheral blood mononuclear cells (PBMC, including both CD8+ and CD4+ T cells) with a high affinity TCR to the melanoma tumor rejection antigen MART-1 using a lentiviral vector. We will follow the bio-distribution and persistence of adoptively transferred, transduced PBMC in vivo via PETbased imaging and relate this to their functional activity, assessed by cutting edge immunoassays.
Aim 1 will be a phase I dose escalation clinical trial that will test the safety and feasibility of adoptive transfer of MART-1 TCR transgenic CD8+ and CD4+ T cells to patients with metastatic melanoma. All patients will be HLA-A2.1 positive and have MART-1 expressing melanoma. Two cohorts of 6 patients will have received a lymphodepleting or myelodepleting chemo-irradiation regimen to study how to fully exploit post-conditioning homeostatic T cell proliferation. Following adoptive TCR transgenic cell transfer, patients will receive MART-1- specific in vivo boosting with dendritic cell (DC) vaccines together with high dose interleukin-2 (IL-2) to foster additional antigen-driven expansion. Patients in the myelodepleting cohort will receive hematopoietic support with the reinfusion of CD34-purified peripheral blood stem cells (PBSC).
In Aim 2 we will examine the impact of the conditioning regimen and the infused TCR transgenic cell phenotype on the ex vivo expansion, persistence, phenotype and function of MART-1 TCR transgenic CD8+ T cells recovered from patients. We hypothesize that the T cell subpopulations that are able to sustain long-term persistence (naive and central memory T cells) will have adequate systemic distribution, tumor targeting and antitumor activity. To evaluate this premise, we propose to study serially sampled blood and tumors for immune function assessment. PET-based imaging technology will guide us to sample tumor sites infiltrated with the TCR transgenic T cells.
In Aim 3 we will investigate the contribution to antitumor immunity of CD4+ cells genetically modified to recognize a tumor antigen restricted by MHC class I molecules (a cell type that does not exist in nature). We will determine their ability to serve as effective helper cells for CD8+ cytotoxic T lymphocytes (CTL) and rule out the possibility that they become induced suppressor Treg (iTreg). In summary, we propose to test tumor antigen-specific TCR transgenic cell adoptive transfer in a bench-tobedside and bedside-to-bench clinical research project.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
California Institute of Technology
United States
Zip Code
Liu, Yarong; Xiao, Liang; Joo, Kye-Il et al. (2014) In situ modulation of dendritic cells by injectable thermosensitive hydrogels for cancer vaccines in mice. Biomacromolecules 15:3836-45
Javed, Muhammad Rashed; Chen, Supin; Kim, Hee-Kwon et al. (2014) Efficient radiosynthesis of 3'-deoxy-3'-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip. J Nucl Med 55:321-8
Liu, Yarong; Fang, Jinxu; Joo, Kye-Il et al. (2014) Codelivery of chemotherapeutics via crosslinked multilamellar liposomal vesicles to overcome multidrug resistance in tumor. PLoS One 9:e110611
Gschweng, Eric H; McCracken, Melissa N; Kaufman, Michael L et al. (2014) HSV-sr39TK positron emission tomography and suicide gene elimination of human hematopoietic stem cells and their progeny in humanized mice. Cancer Res 74:5173-83
Liu, Yarong; Fang, Jinxu; Kim, Yu-Jeong et al. (2014) Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm 11:1651-61
Chodon, Thinle; Comin-Anduix, BegoƱa; Chmielowski, Bartosz et al. (2014) Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res 20:2457-65
Ribas, Antoni; Tumeh, Paul C (2014) The future of cancer therapy: selecting patients likely to respond to PD1/L1 blockade. Clin Cancer Res 20:4982-4
Gschweng, Eric; De Oliveira, Satiro; Kohn, Donald B (2014) Hematopoietic stem cells for cancer immunotherapy. Immunol Rev 257:237-49
Liu, Yarong; Joo, Kye-Il; Lei, Yuning et al. (2014) Visualization of intracellular pathways of engineered baculovirus in mammalian cells. Virus Res 181:81-91
Atefi, Mohammad; Avramis, Earl; Lassen, Amanda et al. (2014) Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res 20:3446-57

Showing the most recent 10 out of 30 publications