PROJECT 3: TRANSDUCTION OF HEMATOPOIETIC STEM CELLS FOR ENHANCED IMMUNOTHERAPY OF MELANOMA. Project Leaders: Donald B. Kohn, James S. Economou, Antoni Ribas, Jerome A. Zack ABSTRACT Immunotherapy can be performed by expressing in T cells the genes encoding a T cell receptor (TCR) reactive against a tumor-associated antigen. This Project takes this approach, which is explored in Project 1, further by examining whether administration of hematopoietic stem cells (HSC) transduced with the genes encoding an anti-tumor TCR can lead to de novo production of T cells expressing the introduced TCR genes.. Theoretically, transduced HSC could serve as an additional long-term source of engineered T cells for sustained anti-tumor activity, to augment that of transduced mature T cells. We will develop and perform a Phase I clinical trial to assess the safety and feasibility of administering autologous CD34+ HSC transduced to express a TCR recognizing a peptide from MART-1 for immunotherapy of patients with advanced melanoma. These engineered CD34+ cells will be co-administered along with mature T cells transduced to express the same MART-1 TCR, but with a distinguishable reporter gene. This dual marking approach will allow identification, isolation and characterization of the TCR-expressing T cells produced in vivo from the CD34+ cells and determination of their in vivo biodistribution by using PET imaging. During the planning stage of the clinical trial, we will use pre-clinical models of human T cell production from HSC to perform detailed characterization of the T cells derived from transduced human HSC. Ongoing scientific collaborations will occur with all of the Projects and Cores of this Program. The clinical trial of this Project 3 will be performed in years 4-5 of this program, building on the clinical trial of Project 1 that defines the optimal methods for administration of the TCR-transduced T cells. These studies will assess the potential role of HSC for cancer immunotherapy using TCR-based approaches.

Public Health Relevance

Benefit to public health: Immunotherapy is emerging as a new modality to treat cancer, with the prospect for novel effective therapies and safer outcomes for affected patients. It is possible to engineer the human immune system to eradicate malignant cells by expressing T cell receptors against tumor-associated antigens and one promising approach is to use hematopoietic stem cells (HSC) as the source of these tumor-targeted T cells. This Project will explore the safety and feasibility of the use of HSC for immunotherapy of cancer and may lead to improved cancer therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA132681-04
Application #
8448000
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
4
Fiscal Year
2013
Total Cost
$267,685
Indirect Cost
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Fendler, Wolfgang Peter; Barrio, Martin; Spick, Claudio et al. (2016) 68Ga-DOTATATE PET/CT interobserver agreement for neuroendocrine tumor assessments: results from a prospective study on 50 patients. J Nucl Med :
Boschi, Stefano; Lee, Jason T; Beykan, Seval et al. (2016) Synthesis and preclinical evaluation of an Al(18)F radiofluorinated GLU-UREA-LYS(AHX)-HBED-CC PSMA ligand. Eur J Nucl Med Mol Imaging 43:2122-2130
Bethune, Michael T; Gee, Marvin H; Bunse, Mario et al. (2016) Domain-swapped T cell receptors improve the safety of TCR gene therapy. Elife 5:
Bluemel, Christina; Krebs, Markus; Polat, Bülent et al. (2016) 68Ga-PSMA-PET/CT in Patients With Biochemical Prostate Cancer Recurrence and Negative 18F-Choline-PET/CT. Clin Nucl Med 41:515-21
Fiacco, Stephen V; Kelderhouse, Lindsay E; Hardy, Amanda et al. (2016) Directed Evolution of Scanning Unnatural-Protease-Resistant (SUPR) Peptides for in Vivo Applications. Chembiochem 17:1643-51
Fendler, Wolfgang Peter; Czernin, Johannes; Herrmann, Ken et al. (2016) Variations in PET/MRI Operations: Results from an International Survey Among 39 Active Sites. J Nucl Med 57:2016-2021
Spick, Claudio; Herrmann, Ken; Czernin, Johannes (2016) 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients. J Nucl Med 57:420-30
Fang, Jinxu; Hu, Biliang; Li, Si et al. (2016) A multi-antigen vaccine in combination with an immunotoxin targeting tumor-associated fibroblast for treating murine melanoma. Mol Ther Oncolytics 3:16007
Mok, Stephen; Tsoi, Jennifer; Koya, Richard C et al. (2015) Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition. BMC Cancer 15:356
Herrmann, Ken; Bluemel, Christina; Weineisen, Martina et al. (2015) Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J Nucl Med 56:855-61

Showing the most recent 10 out of 58 publications