The Eph receptors represent the largest family of receptor tyrosine kinases identified to date, with fourteen structurally similar Eph receptors now identified in the human genome. Eph receptors and ephrins are both anchored to the cell surface and play a key role in cell-cell communication, regulating such processes as tissue patterning, axonal guidance, and synaptic plasticity, angiogenesis and tumorigenesis. Both the Eph receptors and the ephrins can be divided into two classes based on sequence conservation. There are nine human EphA receptors and five ephrin-A ligands in the A class and there are five human Eph receptors and three ephrin-B ligands in the B class. The ephrins of the A class are GPI-anchored while the ephrins of the B class function as transmembrane proteins that contain conserved carboxy-terminal cytoplasmic domains. Interestingly, there is high binding promiscuity in the interactions between Eph receptors and ephrins of the same class, and several Eph receptors/ephrins can also mediate interactions between classes. The purpose of Core A is to provide protein expression and purification services to support the crystallographic, NMR, biochemical, and cell culture studies of the program project. The Eph Protein Production Core will generate purified Eph receptor and ephrin protein domains for Project 1-3. The Core will use both baculovirus and bacterial expression systems to produce protein domains that will be purified for crystallization trials, NMR experiments, biochemical, cell culture and in vivo studies. Filtration and column-based puriflcation methodologies will be used to generate purified proteins and Eph receptor/ephrin complexes. Size-exclusion chromatography, dynamic light scattering and mass spectrometry techniques will be used to assess complex formation and homogeneity and monodispersity of the purified proteins. Furthermore, the Core will design, generate and store wild-type and mutant Eph receptor and ephrin protein constructs. Relevant data from protein production runs will be stored on a SharePoint Server to enable data sharing amongst project participants

Public Health Relevance

Significant expertise and effort are required to express and purify Eph receptors and ephrin protein domains for structural and biochemical studies to define the structural features of Eph receptor-ephrin binding specificity and their importance for tumor growth. Facilitating these studies through a centralized protein production core facility will also help the development of chemical compounds and peptides that will serve as potential cancer therapeutic starting points.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sanford-Burnham Medical Research Institute
La Jolla
United States
Zip Code
Hassan-Mohamed, I; Giorgio, C; Incerti, M et al. (2014) UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br J Pharmacol 171:5195-208
Vargas, Lina M; Leal, Nancy; Estrada, Lisbell D et al. (2014) EphA4 activation of c-Abl mediates synaptic loss and LTP blockade caused by amyloid-? oligomers. PLoS One 9:e92309
Lamberto, Ilaria; Lechtenberg, Bernhard C; Olson, Erika J et al. (2014) Development and structural analysis of a nanomolar cyclic peptide antagonist for the EphA4 receptor. ACS Chem Biol 9:2787-95
Barile, Elisa; Wang, Si; Das, Swadesh K et al. (2014) Design, synthesis and bioevaluation of an EphA2 receptor-based targeted delivery system. ChemMedChem 9:1403-12
Incerti, Matteo; Tognolini, Massimiliano; Russo, Simonetta et al. (2013) Amino acid conjugates of lithocholic acid as antagonists of the EphA2 receptor. J Med Chem 56:2936-47
Wang, Si; Noberini, Roberta; Stebbins, John L et al. (2013) Targeted delivery of paclitaxel to EphA2-expressing cancer cells. Clin Cancer Res 19:128-37
Mercurio, Flavia A; Marasco, Daniela; Pirone, Luciano et al. (2013) Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights. Chembiochem 14:100-6
Duggineni, Srinivas; Mitra, Sayantan; Noberini, Roberta et al. (2013) Design, synthesis and characterization of novel small molecular inhibitors of ephrin-B2 binding to EphB4. Biochem Pharmacol 85:507-13
Wu, Bainan; Zhang, Ziming; Noberini, Roberta et al. (2013) HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery. Chem Biol 20:19-33
Duggineni, Srinivas; Mitra, Sayantan; Lamberto, Ilaria et al. (2013) Design and Synthesis of Potent Bivalent Peptide Agonists Targeting the EphA2 Receptor. ACS Med Chem Lett 4:

Showing the most recent 10 out of 20 publications