The Animal Models Core is designed to provide two nnain services. First, the Core will oversee the husbandry, maintenance, and quality control ofthe genetic mouse models of prostate cancer utilized by each Project in the application, including prostate-specific Pten conditional knockout mice (Pterf""""""""'^') and transgenic TRAMP mice. These mouse models are already fully established In the applicants'laboratories, have been properly maintained, and have been used to generate critical preliminary data in support of the various specific aims. As Co-Director of Core B, Dr. Stephen Jones will ensure the maintenance, genotyping, and timely availability of these mouse strains to fulfill the experimental objectives of each Project. The second task of Core B Is to provide state-of-the-art molecular imaging in support of the preclinical evaluation of """"""""network inhibitors"""""""" proposed In the application, which include mitochondria-targeted small molecule Hsp90 inhibitors, Gamitrinibs (Project 1), function-blocking monoclonal antibody (mAb) 6.3G9 to avPe integrin (Project 2), and lentiviral delivery of short hairpin RNA (shRNA) to silence Runx2 in bone metastatic prostate cancer, in vivo (Project 3). For these tasks. Core B will provide quantitative analysis of tumor growth in xenograft studies with genetically engineered prostate cancer cell types, evaluate tumor responses to """"""""network inhibitors"""""""" in localized and metastatic disease models, and map osteoblastic and osteoclastic bone remodeling pathways during intratibial growth of prostate cancer, in vivo. Dr. Alexei Bogdanov, Director of Core B, will lead these efforts by coordinating an extensive portfolio of molecular imaging capabilities, including MRI, (iCT, high resolution X-ray radiography, and bioluminescence. Core B will support equally all three Projects in the application. Overall, these studies will provide a quantitative and unbiased evaluation of prostate cancer responses after treatment with novel molecular therapies, and validate target and pathway specificity, in vivo.

Public Health Relevance

The services provided by Core B are essential to support the preclinical studies of novel molecular therapeutics for advanced prostate cancer as proposed in the application. The synergistic combination of genetic mouse models of prostate cancer, and state-of-the-art molecular imaging will elucidate novel mechanisms of prostate cancer progression, and credential the potential efficacy of network inhibitors as candidate molecular therapies for advanced and metastatic disease In humans.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Karpel-Massler, Georg; Ishida, Chiaki Tsuge; Bianchetti, Elena et al. (2017) Inhibition of Mitochondrial Matrix Chaperones and Antiapoptotic Bcl-2 Family Proteins Empower Antitumor Therapeutic Responses. Cancer Res 77:3513-3526
Bryant, Kelly G; Chae, Young Chan; Martinez, Rogelio L et al. (2017) A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy. Oncotarget 8:112184-112198
Zingiryan, Areg; Farina, Nicholas H; Finstad, Kristiaan H et al. (2017) Dissection of Individual Prostate Lobes in Mouse Models of Prostate Cancer to Obtain High Quality RNA. J Cell Physiol 232:14-8
Ishida, Chiaki Tsuge; Shu, Chang; Halatsch, Marc-Eric et al. (2017) Mitochondrial matrix chaperone and c-myc inhibition causes enhanced lethality in glioblastoma. Oncotarget 8:37140-37153
DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita et al. (2017) c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem 118:66-73
Caino, M Cecilia; Seo, Jae Ho; Wang, Yuan et al. (2017) Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest 127:3755-3769
Kumar, Vinit; Donthireddy, Laxminarasimha; Marvel, Douglas et al. (2017) Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell 32:654-668.e5
Lu, Huimin; Wang, Tao; Li, Jing et al. (2016) ?v?6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Res 76:5163-74
Caino, M Cecilia; Seo, Jae Ho; Aguinaldo, Angeline et al. (2016) A neuronal network of mitochondrial dynamics regulates metastasis. Nat Commun 7:13730
Sayeed, Aejaz; Lu, Huimin; Liu, Qin et al. (2016) ?1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation. Oncotarget 7:52618-52630

Showing the most recent 10 out of 68 publications