Runx2 is preferentially expressed in metastatic prostate cancer cells, but not in non-metastatic cells, promotes aggressive tumor behavior and induces a spectrum of cancer-related genes. Therefore, Project 3 will test the hypothesis that prostate cancer progression is highly Runx2-dependent and this signaling network provides a viable target for translational approaches to inhibit prostate tumorigenesis and metastasis. State-of-the-art experimental strategies will be employed including prostate specific genomics, in vivo bioimaging using luciferase transgenes, and RNA interference using Runx2 shRNA in prostate and metastatic bone tumors to mechanistically characterize Runx2-mediated control of prostate cancer tumorigenesis and metastasis as well as to establish therapeutic potential for Runx 2 inhibition. Experiments in Aim 1 will characterize mechanisms in vitro by which Runx2 contributes to prostate cancer cell growth and metastatic properties. This will involve analysis of Runx2 expression and function in the regulation of cell survival (in collaboration with Project 1). adhesion and invasion (in collaboration with Project 2 of androgen dependent and -independent model prostate cancer cells. Expression profiling and bioinformatic analysis will identify Runx2-related pathways induced in these settings, and validation studies will focus on TGPB, integrin, and Src signaling pathways activated by Runx2. Experiments in Aim 2 will examine in vivo mechanisms by which Runx2 contributes to prostate cancer progression and metastatic bone disease. The hypothesis that Runx2-dependent gene expression is differentially modulated in distinct prostate and bone microenvironments will be investigated in orthotopic models. Analysis of bone lesions (osteolytic versus osteoblastic), modulation of tumor growth, and elucidation of gene pathways suppressed or activated by manipulating Runx2 levels will be determined by molecular imaging, laser-capture microdissection, quantitative histopathology and biochemical characterization of TGPB/SMAD or Src/WW signaling.
Aim 3 will investigate the tumorigenic properties of Runx2 in TRAMP mice and the therapeutic potential of Runx2 depletion (by shRNA Runx2) in both the TRAMP mouse and in pre-formed orthotopic prostate and bone tumors in the SCID mouse. This study will provide mechanistic insight into Runx2 control of signaling pathways mediating growth of primary prostate tumors and prostate tumors that have metastasized to bone. A basis will be provided for pre-clinical evaluation of targeting Runx2 by shRNA inhibition in prostate cancer cells before acquisition of metastatic properties.

Public Health Relevance

There are limited options for therapeutic management of advanced prostate cancer. Mechanistic insight intocontrol of prostate cancer by the Runx transcription factor can provide an effective strategy for preventing bone metastasis and treating tumors that have metastasized to bone.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA140043-05
Application #
8526416
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$274,049
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Caino, M Cecilia; Altieri, Dario C (2016) Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy. Clin Cancer Res 22:540-5
Lisanti, Sofia; Garlick, David S; Bryant, Kelly G et al. (2016) Transgenic Expression of the Mitochondrial Chaperone TNFR-associated Protein 1 (TRAP1) Accelerates Prostate Cancer Development. J Biol Chem 291:25247-25254
Lu, Huimin; Wang, Tao; Li, Jing et al. (2016) αvβ6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Res 76:5163-74
Languino, Lucia R; Singh, Amrita; Prisco, Marco et al. (2016) Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma. Am J Transl Res 8:2432-7
Chae, Young Chan; Vaira, Valentina; Caino, M Cecilia et al. (2016) Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming. Cancer Cell 30:257-72
Singh, Amrita; Fedele, Carmine; Lu, Huimin et al. (2016) Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol Cancer Res 14:1136-1146
Farina, Nicholas H; Zingiryan, Areg; Akech, Jacqueline A et al. (2016) A microRNA/Runx1/Runx2 network regulates prostate tumor progression from onset to adenocarcinoma in TRAMP mice. Oncotarget :
Chae, Young Chan; Angelin, Alessia; Lisanti, Sofia et al. (2015) Corrigendum: Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun 6:7605
Zhang, Xuhui; Akech, Jacqueline; Browne, Gillian et al. (2015) Runx2-Smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer 136:1321-32
Forno, Irene; Ferrero, Stefano; Russo, Maria Veronica et al. (2015) Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression. PLoS One 10:e0130060

Showing the most recent 10 out of 56 publications