The broad, long-term objectives of this research are the development of novel and high-impact statistical and computational tools for discovering genetic variants associated with inter-individual differences in the efficacy and toxicity of cancer medications and for optimizing drug therapy on the basis of each patient's genetic constitution.
The specific aims i nclude: (1) construction of robust and efficient statistical methods for assessing the effects of SNP genotypes and haplotypes on drug response with a variety of phenotypes (e.g., binary and continuous measures of efficacy and toxicity, right-censored survival time, interval-censored time tp disease progression, and informatively censored PSA levels and adverse events);(2) development of statistical and data-mining techniques for predicting drug response based on high-dimensional, highly correlated genomic data and complex phenotypes;(3) investigation of statistical procedures for providing low-bias estimation of effect sizes with complex and highly multivariate genetic data for follow-up and confirmation studies;(4) exploration of a new form of machine learning for identifying candidate individualized therapies in both pre-clinical studies and clinical trials. All these aims have been motivated by the investigators'applied research experiences and address the most timely and important issues in pharmacogenomics and individualized therapy. The proposed solutions are built on sound statistical and data-mining principles. The theoretical properties of the new methods will be established rigorously via modern empirical process theory and other advanced mathematical arguments. Efficient and stable numerical algorithms will be devised to implement the new methods. Extensive simulation studies will be conducted to evaluate the operating characteristics of the new inferential and numerical procedures in realistic settings. Applications will be provided to a large number of cancer studies, most of which are carried out at Duke University and the University of North Carolina at Chapel Hill. Practical and user-friendly software will be developed and disseminated freely to the general public. Our research will change the ways pharmacogenomic studies and individualized therapy trials are designed and analyzed, which will lead to optimal treatments for patients in cancer and other diseases.

Public Health Relevance

The proposed research will develop new statistical methods that will significantly improve the ways pharmacogenomic studies and individualized therapy trials are designed and analyzed. This will improve public health by hastening the discovery of better treatments for patients in cancer and in other diseases.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Wang, Xiaofei; Wang, Xiaoyi; Hodgson, Lydia et al. (2017) Validation of Progression-Free Survival as a Surrogate Endpoint for Overall Survival in Malignant Mesothelioma: Analysis of Cancer and Leukemia Group B and North Central Cancer Treatment Group (Alliance) Trials. Oncologist 22:189-198
Zhang, Danjie; Chen, Ming-Hui; Ibrahim, Joseph G et al. (2017) Bayesian Model Assessment in Joint Modeling of Longitudinal and Survival Data with Applications to Cancer Clinical Trials. J Comput Graph Stat 26:121-133
Kang, Suhyun; Lu, Wenbin; Song, Rui (2017) Subgroup detection and sample size calculation with proportional hazards regression for survival data. Stat Med 36:4646-4659
Zhao, Jingkang; Li, Dongshunyi; Seo, Jungkyun et al. (2017) Quantifying the Impact of Non-coding Variants on Transcription Factor-DNA Binding. Res Comput Mol Biol 10229:336-352
Silva, Grace O; Siegel, Marni B; Mose, Lisle E et al. (2017) SynthEx: a synthetic-normal-based DNA sequencing tool for copy number alteration detection and tumor heterogeneity profiling. Genome Biol 18:66
Stinchcombe, Thomas E; Zhang, Ying; Vokes, Everett E et al. (2017) Pooled Analysis of Individual Patient Data on Concurrent Chemoradiotherapy for Stage III Non-Small-Cell Lung Cancer in Elderly Patients Compared With Younger Patients Who Participated in US National Cancer Institute Cooperative Group Studies. J Clin Oncol 35:2885-2892
Li, Zhiguo (2017) Comparison of adaptive treatment strategies based on longitudinal outcomes in sequential multiple assignment randomized trials. Stat Med 36:403-415
Ding, Jieli; Lu, Tsui-Shan; Cai, Jianwen et al. (2017) Recent progresses in outcome-dependent sampling with failure time data. Lifetime Data Anal 23:57-82
Liang, Baosheng; Tong, Xingwei; Zeng, Donglin et al. (2017) SEMIPARAMETRIC REGRESSION ANALYSIS OF REPEATED CURRENT STATUS DATA. Stat Sin 27:1079-1100
Kong, Dehan; Maity, Arnab; Hsu, Fang-Chi et al. (2017) Rejoinder to ""A note on testing and estimation in marker-set association study using semiparametric quantile regression kernel machine"". Biometrics :

Showing the most recent 10 out of 462 publications