The Sentinel Initiative mandated by the Food and Drug Administration will lead to an enormous number of studies being planned post-market that will require analyzing and combining data from several different studies. The proposed project will address this challenge through developing new and flexible methods for meta-analysis using a variety of models, including models for binary and discrete data, models for longitudinal data, and models for time-to-event data. A related issue that will also be addressed is design, sample size, and power considerations using these types of meta-analytic models. Such models and data collected post-market can be quite useful in designing future clinical studies such as non-inferiority, equivalence, and superiority cancer clinical trials. The proposed project will also develop methods for metaanalytic studies of diagnostic tests to facilitate evidence-based medicine. We will also create flexible and robust methodology for accurately comparing rare adverse event rates in cancer for different drugs and for determining how those rates are affected by important prognostic factors. The proposed project will also explore statistical methods for the analysis of large cancer data sets for calibrating treatment dose in the presence of potentially conflicting factors, such as length and quality of life and economic costs. We will explore these tradeoffs rigorously, using a utility based approach traditionally employed in the analysis of health policy at the population level. The proposed statistical methodology will be broadly applicable to complex, large scale, data sets arising in phase III clinical trials and post-marketing studies.

Public Health Relevance

The proposed statistical methodology will be broadly applicable to the statistical analysis and interpretation of complex, large scale, data sets arising in phase III clinical trials and post-marketing studies. The research will improve public health be facilitating discovery of important benefits and risks of cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA142538-04
Application #
8462931
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
4
Fiscal Year
2013
Total Cost
$129,291
Indirect Cost
$18,456
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Jung, Sin-Ho; Lee, Ho Yun; Chow, Shein-Chung (2018) Statistical Methods for Conditional Survival Analysis. J Biopharm Stat 28:927-938
Jiang, Yuchao; Wang, Rujin; Urrutia, Eugene et al. (2018) CODEX2: full-spectrum copy number variation detection by high-throughput DNA sequencing. Genome Biol 19:202
Kim, Soyoung; Zeng, Donglin; Cai, Jianwen (2018) Analysis of multiple survival events in generalized case-cohort designs. Biometrics :
Chung, Yunro; Ivanova, Anastasia; Hudgens, Michael G et al. (2018) Partial likelihood estimation of isotonic proportional hazards models. Biometrika 105:133-148
Liang, Shuhan; Lu, Wenbin; Song, Rui (2018) Deep advantage learning for optimal dynamic treatment regime. Stat Theory Relat Fields 2:80-88
Chen, Xiaolin; Cai, Jianwen (2018) Reweighted estimators for additive hazard model with censoring indicators missing at random. Lifetime Data Anal 24:224-249
Yang, Yuchen; Huh, Ruth; Culpepper, Houston W et al. (2018) SAFE-clustering: Single-cell Aggregated (From Ensemble) Clustering for Single-cell RNA-seq Data. Bioinformatics :
Nasution, Marlina D; Wang, Xiaofei (2018) Statistical issues and advances in cancer precision medicine research. J Biopharm Stat 28:215-216
Wu, Yuan; Chambers, Christina D; Xu, Ronghui (2018) Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion. Lifetime Data Anal :
Ibrahim, Joseph G; Kim, Sungduk; Chen, Ming-Hui et al. (2018) Bayesian multivariate skew meta-regression models for individual patient data. Stat Methods Med Res :962280218801147

Showing the most recent 10 out of 549 publications