The Sentinel Initiative mandated by the Food and Drug Administration will lead to an enormous number of studies being planned post-market that will require analyzing and combining data from several different studies. The proposed project will address this challenge through developing new and flexible methods for meta-analysis using a variety of models, including models for binary and discrete data, models for longitudinal data, and models for time-to-event data. A related issue that will also be addressed is design, sample size, and power considerations using these types of meta-analytic models. Such models and data collected post-market can be quite useful in designing future clinical studies such as non-inferiority, equivalence, and superiority cancer clinical trials. The proposed project will also develop methods for metaanalytic studies of diagnostic tests to facilitate evidence-based medicine. We will also create flexible and robust methodology for accurately comparing rare adverse event rates in cancer for different drugs and for determining how those rates are affected by important prognostic factors. The proposed project will also explore statistical methods for the analysis of large cancer data sets for calibrating treatment dose in the presence of potentially conflicting factors, such as length and quality of life and economic costs. We will explore these tradeoffs rigorously, using a utility based approach traditionally employed in the analysis of health policy at the population level. The proposed statistical methodology will be broadly applicable to complex, large scale, data sets arising in phase III clinical trials and post-marketing studies.

Public Health Relevance

The proposed statistical methodology will be broadly applicable to the statistical analysis and interpretation of complex, large scale, data sets arising in phase III clinical trials and post-marketing studies. The research will improve public health be facilitating discovery of important benefits and risks of cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA142538-04
Application #
8462931
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
4
Fiscal Year
2013
Total Cost
$129,291
Indirect Cost
$18,456
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Liang, Shuhan; Lu, Wenbin; Song, Rui et al. (2018) Sparse concordance-assisted learning for optimal treatment decision. J Mach Learn Res 18:
Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn et al. (2018) A New Monte Carlo Method for Estimating Marginal Likelihoods. Bayesian Anal 13:311-333
Laber, Eric B; Wu, Fan; Munera, Catherine et al. (2018) Identifying optimal dosage regimes under safety constraints: An application to long term opioid treatment of chronic pain. Stat Med 37:1407-1418
Diao, Guoqing; Dong, Jun; Zeng, Donglin et al. (2018) Biomarker threshold adaptive designs for survival endpoints. J Biopharm Stat 28:1038-1054
Davenport, Clemontina A; Maity, Arnab; Sullivan, Patrick F et al. (2018) A Powerful Test for SNP Effects on Multivariate Binary Outcomes using Kernel Machine Regression. Stat Biosci 10:117-138
Chen, Stephanie T; Xiao, Luo; Staicu, Ana-Maria (2018) A Smoothing-based Goodness-of-Fit Test of Covariance for Functional Data. Biometrics :
Chen, Kun; Mishra, Neha; Smyth, Joan et al. (2018) A Tailored Multivariate Mixture Model for Detecting Proteins of Concordant Change Among Virulent Strains of Clostridium Perfringens. J Am Stat Assoc 113:546-559
Wang, Lan; Zhou, Yu; Song, Rui et al. (2018) Quantile-Optimal Treatment Regimes. J Am Stat Assoc 113:1243-1254
Hager, Rebecca; Tsiatis, Anastasios A; Davidian, Marie (2018) Optimal two-stage dynamic treatment regimes from a classification perspective with censored survival data. Biometrics :
Lachos, Victor H; A Matos, Larissa; Castro, Luis M et al. (2018) Flexible longitudinal linear mixed models for multiple censored responses data. Stat Med :

Showing the most recent 10 out of 549 publications