The Sentinel Initiative mandated by the Food and Drug Administration will lead to an enormous number of studies being planned post-market that will require analyzing and combining data from several different studies. The proposed project will address this challenge through developing new and flexible methods for meta-analysis using a variety of models, including models for binary and discrete data, models for longitudinal data, and models for time-to-event data. A related issue that will also be addressed is design, sample size, and power considerations using these types of meta-analytic models. Such models and data collected post-market can be quite useful in designing future clinical studies such as non-inferiority, equivalence, and superiority cancer clinical trials. The proposed project will also develop methods for metaanalytic studies of diagnostic tests to facilitate evidence-based medicine. We will also create flexible and robust methodology for accurately comparing rare adverse event rates in cancer for different drugs and for determining how those rates are affected by important prognostic factors. The proposed project will also explore statistical methods for the analysis of large cancer data sets for calibrating treatment dose in the presence of potentially conflicting factors, such as length and quality of life and economic costs. We will explore these tradeoffs rigorously, using a utility based approach traditionally employed in the analysis of health policy at the population level. The proposed statistical methodology will be broadly applicable to complex, large scale, data sets arising in phase III clinical trials and post-marketing studies.

Public Health Relevance

The proposed statistical methodology will be broadly applicable to the statistical analysis and interpretation of complex, large scale, data sets arising in phase III clinical trials and post-marketing studies. The research will improve public health be facilitating discovery of important benefits and risks of cancer treatment.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Wang, Zhi; Maity, Arnab; Luo, Yiwen et al. (2015) Complete effect-profile assessment in association studies with multiple genetic and multiple environmental factors. Genet Epidemiol 39:122-33
Geng, Yuan; Zhang, Hao Helen; Lu, Wenbin (2015) On optimal treatment regimes selection for mean survival time. Stat Med 34:1169-84
Liu, Yulun; Chen, Yong; Chu, Haitao (2015) A unification of models for meta-analysis of diagnostic accuracy studies without a gold standard. Biometrics 71:538-47
Chen, Qingxia; Zeng, Donglin; Ibrahim, Joseph G et al. (2015) Quantifying the average of the time-varying hazard ratio via a class of transformations. Lifetime Data Anal 21:259-79
Viele, Kert; Berry, Scott; Neuenschwander, Beat et al. (2014) Use of historical control data for assessing treatment effects in clinical trials. Pharm Stat 13:41-54
Wang, Xin; Zhang, Daowen; Tzeng, Jung-Ying (2014) Pathway-guided identification of gene-gene interactions. Ann Hum Genet 78:478-91
Chen, Ming-Hui; Ibrahim, Joseph G; Zeng, Donglin et al. (2014) Bayesian design of superiority clinical trials for recurrent events data with applications to bleeding and transfusion events in myelodyplastic syndrome. Biometrics 70:1003-13
Lin, Ja-An; Zhu, Hongtu; Mihye, Ahn et al. (2014) Functional-mixed effects models for candidate genetic mapping in imaging genetic studies. Genet Epidemiol 38:680-91
Zhang, Jing; Carlin, Bradley P; Neaton, James D et al. (2014) Network meta-analysis of randomized clinical trials: reporting the proper summaries. Clin Trials 11:246-62
Zeng, Donglin; Lin, D Y (2014) Efficient Estimation of Semiparametric Transformation Models for Two-Phase Cohort Studies. J Am Stat Assoc 109:371-383

Showing the most recent 10 out of 133 publications