We have utilized our in vitro and in vivo models of the multiple myeloma (MM) cell in the BM milieu to demonstrate the molecular mechanisms whereby novel agents target tumor cells, host interactions, and the BM microenvironment to overcome conventional drug resistance. We have then rapidly translated these laboratory findings to the clinic leading to FDA approvals of six novel treatments in the past five years;importantly, the median survival of MM patients has been extended from 3 to 7 years as a direct result of these advances. Our preclinical in vitro and in vivo efforts combining bortezomib with lenalidomide demonstrated synergistic MM cytotoxicity, and our derived clinical trials in newly diagnosed patients showed remarkable response;together, these data provided the rationale for the proposed clinical study in Project 1. We hypothesize that genetic changes identified using extensive oncogenomic profiling in Projects 2 and 4 represent novel therapeutic targets in MM. In this Project, we will use our robust human MM model systems to stringently validate the role of these novel targets in MM cell growth, survival, and drug resistance;and assess the therapeutic potential of these targets, both alone and in combination with established and emerging MM therapeutics. We will use a high-throughput shRNA-based assay directed at these targets to identify those regulating MM cell growth and survival in vitro (Specific Aim 1);validate the functional role of selected molecular targets regulating MM cell growth, survival, and drug resistance using our in vitro and in vivo models of human MM in the bone marrow milieu (Specific Aim 2);and evaluate the impact of potential therapeutic agents directed against these validated novel molecular targets, alone and in combination in MM (Specific Aim 3). This proposal will therefore identify the next generation of targeted therapies in MM.

Public Health Relevance

This project will validate biologically relevant and clinically applicable targets in myeloma and develop therapeutic agents directed at these targets in vitro and in vivo for potential clinical consideration.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA155258-04
Application #
8733616
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
4
Fiscal Year
2014
Total Cost
$207,345
Indirect Cost
$53,448
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Fulciniti, Mariateresa; Martinez-Lopez, Joaquin; Senapedis, William et al. (2017) Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma. Blood 129:2233-2245
Magrangeas, Florence; Kuiper, Rowan; Avet-Loiseau, Hervé et al. (2016) A Genome-Wide Association Study Identifies a Novel Locus for Bortezomib-Induced Peripheral Neuropathy in European Patients with Multiple Myeloma. Clin Cancer Res 22:4350-4355
Ohguchi, Hiroto; Hideshima, Teru; Bhasin, Manoj K et al. (2016) The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun 7:10258
Stroopinsky, Dina; Kufe, Donald; Avigan, David (2016) MUC1 in hematological malignancies. Leuk Lymphoma 57:2489-98
Richardson, Paul G; Hungria, Vânia T M; Yoon, Sung-Soo et al. (2016) Panobinostat plus bortezomib and dexamethasone in previously treated multiple myeloma: outcomes by prior treatment. Blood 127:713-21
Fulciniti, M; Amodio, N; Bandi, R L et al. (2016) miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth. Blood Cancer J 6:e380
Szalat, Raphael; Avet-Loiseau, Herve; Munshi, Nikhil C (2016) Gene Expression Profiles in Myeloma: Ready for the Real World? Clin Cancer Res 22:5434-5442
Amodio, Nicola; Stamato, Maria Angelica; Gullà, Anna Maria et al. (2016) Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Mol Cancer Ther 15:1364-75
Xu, Lian; Hunter, Zachary R; Tsakmaklis, Nicholas et al. (2016) Clonal architecture of CXCR4 WHIM-like mutations in Waldenström Macroglobulinaemia. Br J Haematol 172:735-44
Gullà, Annamaria; Di Martino, Maria Teresa; Gallo Cantafio, Maria Eugenia et al. (2016) A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clin Cancer Res 22:1222-33

Showing the most recent 10 out of 180 publications