The exciting potential for deep-seated brain tumors is the ability to treat them with focused ultrasound, without damage to the intervening tissues, and without the need to open the head. MRI can provide the necessary control for these procedures through outstanding soft tissue contrast for targeting, monitoring techniques with MR thermometry, and the means to assess tissue viability immediately after treatment.
The aims of this project are to improve these MR methods. Specifically, we aim to a) improve focal spot localization, b) improve temperature imaging including whole brain coverage and reduced sensitivity to artifacts, c) improved ablation in the presence of calcifications, and d) test the hypotheses that a series of ultrasound pulses do not damage brain tissue and that heat fixation occurs for temperatures greater than 60 C. In addition, we will investigate the appearance of thermal lesions on DWI, MT, T1, CE, and stiffness weighted images.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA159992-02
Application #
8555396
Study Section
Special Emphasis Panel (ZCA1-GRB-P (M1))
Project Start
2011-09-22
Project End
2016-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
2
Fiscal Year
2012
Total Cost
$199,982
Indirect Cost
$65,686
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Adams, Matthew S; Salgaonkar, Vasant A; Scott, Serena J et al. (2017) Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain. Med Phys 44:5339-5356
Gibbons, Eric K; Le Roux, Patrick; Vasanawala, Shreyas S et al. (2017) Body Diffusion Weighted Imaging Using Non-CPMG Fast Spin Echo. IEEE Trans Med Imaging 36:549-559
Ghanouni, Pejman; Kishore, Sirish; Lungren, Matthew P et al. (2017) Treatment of Low-Flow Vascular Malformations of the Extremities Using MR-Guided High Intensity Focused Ultrasound: Preliminary Experience. J Vasc Interv Radiol 28:1739-1744
Johnson, Ethan M; Vyas, Urvi; Ghanouni, Pejman et al. (2017) Improved cortical bone specificity in UTE MR Imaging. Magn Reson Med 77:684-695
Weber, Hans; Taviani, Valentina; Yoon, Daehyun et al. (2017) MR thermometry near metallic devices using multispectral imaging. Magn Reson Med 77:1162-1169
Dababou, Susan; Marrocchio, Cristina; Rosenberg, Jarrett et al. (2017) A meta-analysis of palliative treatment of pancreatic cancer with high intensity focused ultrasound. J Ther Ultrasound 5:9
Aggarwal, Kamal; Joshi, Kiran R; Rajavi, Yashar et al. (2017) A Millimeter-Wave Digital Link for Wireless MRI. IEEE Trans Med Imaging 36:574-583
Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea et al. (2017) MRI monitoring of focused ultrasound sonications near metallic hardware. Magn Reson Med :
Ghanouni, Pejman; Dobrotwir, Andrew; Bazzocchi, Alberto et al. (2017) Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol 27:732-740
Bitton, Rachel R; Webb, Taylor D; Pauly, Kim Butts et al. (2016) Improving thermal dose accuracy in magnetic resonance-guided focused ultrasound surgery: Long-term thermometry using a prior baseline as a reference. J Magn Reson Imaging 43:181-9

Showing the most recent 10 out of 56 publications