Early stage prostate cancer is very common. However, current methods for diagnosis and treatment miss significant cancers in some men, and over-treat others with therapies that are expensive, lengthy, and have significant risks and morbidity. MRI is emerging as a promising method for revealing clinically significant prostate cancer, raising the provocative possibility of minimally invasive, focal, MR-guided therapy that would be more selective, safer, and quicker than current whole-gland radiotherapy and surgical procedures.
The aims of this project are to develop minimally invasive biopsy and treatment methods for prostate cancer: 1. Design, testing and final fabrication of a new system for real-time, interactive, trans-perineal minimally invasive access to the prostate while the patient is in a 3T MRI scanner, using MRI-compatible robotic technology for passive remote needle manipulation, embedded miniature fiber optics and MR-tracking to sense needle shape and tip position, and integration with real-time MR scanning for automated visualization. 2. Clinical Trial of MRI-guided Trans-perineal biopsy of prostate targets, compared with subsequent TRUS-guided standard systematic 12-core biopsies (the gold standard) in 12 men with abnormal PSA levels. 3. Development and in vivo testing of MRI-compatible needle tip micro-robotics to dramatically increase physician control, including needle tip force sensing and rendering, and photonic needle tip steering. 4. Investigation of 3T methods for guiding and monitoring cryosurgery, including ultra-short TE 3D MR thermal mapping in frozen tissue, and advanced diffusion and MT-weighted images of acute cryo-injury. When complete, these technologies will be poised for future clinical trials assessing the utility of minimally invasive MRI-guided focal cryosurgery for treating early stage prostate cancer

Public Health Relevance

Achieving the aims of this project will provide a simple, powerful, intuitive, elegant method for biopsy and cryoablation of focal prostate targets, using MRI guidance, that is ready for clinical trials. Essential biopsy system components will have been tested in humans. Second generation robotic sensing and control mechanisms, and MRI imaging of tissue freezing effects will have been validated at 3T and tested in vivo.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA159992-04
Application #
8728143
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
4
Fiscal Year
2014
Total Cost
$272,569
Indirect Cost
$89,988
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Weber, Hans; Hargreaves, Brian A; Daniel, Bruce L (2018) Artifact-reduced imaging of biopsy needles with 2D multispectral imaging. Magn Reson Med 80:655-661
Webb, Taylor D; Leung, Steven A; Rosenberg, Jarrett et al. (2018) Measurements of the Relationship Between CT Hounsfield Units and Acoustic Velocity and How It Changes With Photon Energy and Reconstruction Method. IEEE Trans Ultrason Ferroelectr Freq Control 65:1111-1124
Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea et al. (2018) MRI monitoring of focused ultrasound sonications near metallic hardware. Magn Reson Med 80:259-271
Zheng, Yuan; Marx, Michael; Miller, G Wilson et al. (2018) High sensitivity MR acoustic radiation force imaging using transition band balanced steady-state free precession. Magn Reson Med 79:1532-1537
Han, Amy Kyungwon; Bae, Jung Hwa; Gregoriou, Katerina C et al. (2018) MR-Compatible Haptic Display of Membrane Puncture in Robot-Assisted Needle Procedures. IEEE Trans Haptics :
Gibbons, Eric K; Le Roux, Patrick; Pauly, John M et al. (2018) Slice profile effects on nCPMG SS-FSE. Magn Reson Med 79:430-438
Dixit, Neerav; Stang, Pascal P; Pauly, John M et al. (2018) Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI. IEEE Trans Med Imaging 37:536-546
Gibbons, Eric K; Le Roux, Patrick; Vasanawala, Shreyas S et al. (2018) Robust Self-Calibrating nCPMG Acquisition: Application to Body Diffusion-Weighted Imaging. IEEE Trans Med Imaging 37:200-209
Ghanouni, Pejman; Dobrotwir, Andrew; Bazzocchi, Alberto et al. (2017) Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol 27:732-740
Aggarwal, Kamal; Joshi, Kiran R; Rajavi, Yashar et al. (2017) A Millimeter-Wave Digital Link for Wireless MRI. IEEE Trans Med Imaging 36:574-583

Showing the most recent 10 out of 64 publications