A reliable model system that is relevant to the disease in question is a critical asset to achieve development of safe and effective therapeutics. It is in particular relevant for glioblastoma, since this tumor is composed of heterogeneous multiple types of tumor cells in patients. Recent studies identified that application of the spheroid cultures enables us to maintain the original phenotypic and genetic characteristics of the parental tumors. Core C will utilize its current services to collect additional glioblastoma spheroids (GSs) from affected patients and uncover the phenotypic and genotypic characteristics of these GSs are particularly relevant to each project as detailed in aim 2. Specifically, we will establish spheroid cultures from surgical specimens and perform in vivo tumorigenicity assay to determine if our samples are able to recapitulate patients'tumors histopathologically. We also would plan to provide these services on an ongoing basis for all five years of the grant since characterized GSs transferred to each project may require re-characterization. As such, this Core will provide services essential to all 4 projects. Significance of this Core as a central biorepository will eliminate variability amongst the projects, ensuring that all projects utilize the same GSs for the proposed experiments.

Public Health Relevance

Increasing bodies of evidence suggest that long-term cultures of tumor cells in serum-containing medium, including conventional cell lines, result in undesired phenotypic and genetic transformation of the original tumors. Our spheroid cultures from surgical specimens will create concrete path for the proposed projects to target the right kinds of tumor cells to evaluate therapeutics. Characterization of the samples with the proposed spheroid cultures will also deepen our understanding of the diseases in question.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
Mazzacurati, Lucia; Marzulli, Marco; Reinhart, Bonnie et al. (2015) Use of miRNA response sequences to block off-target replication and increase the safety of an unattenuated, glioblastoma-targeted oncolytic HSV. Mol Ther 23:99-107
Nakashima, Hiroshi; Nguyen, Tran; Goins, William F et al. (2015) Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem 290:1485-95
Meisen, Walter Hans; Dubin, Samuel; Sizemore, Steven T et al. (2015) Changes in BAI1 and nestin expression are prognostic indicators for survival and metastases in breast cancer and provide opportunities for dual targeted therapies. Mol Cancer Ther 14:307-14
Bolyard, Chelsea; Yoo, Ji Young; Wang, Pin-Yi et al. (2014) Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clin Cancer Res 20:6479-94
Nakano, Ichiro (2014) Proneural-mesenchymal transformation of glioma stem cells: do therapies cause evolution of target in glioblastoma? Future Oncol 10:1527-30
Bronisz, Agnieszka; Wang, Yan; Nowicki, Michal O et al. (2014) Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res 74:738-50
Nakashima, Hiroshi; Chiocca, E Antonio (2014) Switching a replication-defective adenoviral vector into a replication-competent, oncolytic adenovirus. J Virol 88:345-53
Kaufmann, Johanna K; Chiocca, E Antonio (2014) Glioma virus therapies between bench and bedside. Neuro Oncol 16:334-51
Wojton, Jeffrey; Meisen, Walter Hans; Jacob, Naduparambil K et al. (2014) SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma. Oncotarget 5:9703-9
Ganguly, Ranjit; Hong, Christopher S; Smith, Luke G F et al. (2014) Maternal embryonic leucine zipper kinase: key kinase for stem cell phenotype in glioma and other cancers. Mol Cancer Ther 13:1393-8

Showing the most recent 10 out of 33 publications