The ultimate goal of this proposal is to understand the role of innate immunity within the context of oncolytic viral (OV) therapy for glioblastoma multiforme (GBM). OV treatment of GBM relies on cancer-specific replication of the virus leading to tumor destruction with minimal toxicity to adjacent non-neoplastic tissue. Results from the 5 clinical trials in patients with malignant glioma have shown the relative safety of this novel treatment modality. However, evidence for significant efficacy remains to be established. Our attention in this project focuses on the natural killer (NK) cell response following viral administration. Due to their antiviral properties, NK cells represent a potential barrier to OV therapy. Alternatively, the antitumor NK response has the potential of augmenting the tumor clearing properties of OV therapy. Our previously published rat in vivo studies have demonstrated that 1) the inflammatory response mediated by activated macrophages/microglia limit OV efficacy and 2) transient immune modulation with cyclophosphamide significantly enhances GBM clearance following OV inoculation. As a result, we hypothesize that NK cells coordinate a robust inflammatory response following initial OV administration that limits viral replication, spread, and tumor lysis, thereby creating a barrier to effective OV therapy for GBM. In this project, we will determine: a) how the antiviral and antitumor properties of NK cells impact overall OV therapeutic efficacy for GBM;b) how NK cells mediate macrophage/microglia inflammatory polarization;c) the key mechanistic signals that lead to NK mediated clearance of OV-infected glioma;and d) how pharmacological agents such as cyclophosphamide and valproic acid modulate the NK response following OV treatment, leading to enhanced clearance of GBM. By elucidating the role of NK cells in orchestrating the inflammatory response following OV therapy, we are highlighting a critical therapeutic target that, when hiodulated, will potentially enhance OV efficacy for GBM. Moreover, the significance of our experiments extends beyond virotherapy into the realm of virology and immunology as we attempt to discern the key mechanistic signals leading to NK mediated clearance of viral infection.

Public Health Relevance

Despite decades of research, prognosis for patients suffering from malignant glioblastoma multiforme (GBM) remains poor. Oncolytic viral (OV) therapy is an experimental treatment currently being evaluated in clinical trials for efficacy against GBM;however, the initial host immune response has been demonstrated to impede OV efficacy. The proposed basic research will investigate a potential barrier to this efficacy, natural killer cells, that can likely be modulated to enhance OV clinical efficacy for malignant GBM.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
Mazzacurati, Lucia; Marzulli, Marco; Reinhart, Bonnie et al. (2015) Use of miRNA response sequences to block off-target replication and increase the safety of an unattenuated, glioblastoma-targeted oncolytic HSV. Mol Ther 23:99-107
Nakashima, Hiroshi; Nguyen, Tran; Goins, William F et al. (2015) Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem 290:1485-95
Meisen, Walter Hans; Dubin, Samuel; Sizemore, Steven T et al. (2015) Changes in BAI1 and nestin expression are prognostic indicators for survival and metastases in breast cancer and provide opportunities for dual targeted therapies. Mol Cancer Ther 14:307-14
Bolyard, Chelsea; Yoo, Ji Young; Wang, Pin-Yi et al. (2014) Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clin Cancer Res 20:6479-94
Nakano, Ichiro (2014) Proneural-mesenchymal transformation of glioma stem cells: do therapies cause evolution of target in glioblastoma? Future Oncol 10:1527-30
Bronisz, Agnieszka; Wang, Yan; Nowicki, Michal O et al. (2014) Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res 74:738-50
Nakashima, Hiroshi; Chiocca, E Antonio (2014) Switching a replication-defective adenoviral vector into a replication-competent, oncolytic adenovirus. J Virol 88:345-53
Kaufmann, Johanna K; Chiocca, E Antonio (2014) Glioma virus therapies between bench and bedside. Neuro Oncol 16:334-51
Wojton, Jeffrey; Meisen, Walter Hans; Jacob, Naduparambil K et al. (2014) SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma. Oncotarget 5:9703-9
Ganguly, Ranjit; Hong, Christopher S; Smith, Luke G F et al. (2014) Maternal embryonic leucine zipper kinase: key kinase for stem cell phenotype in glioma and other cancers. Mol Cancer Ther 13:1393-8

Showing the most recent 10 out of 33 publications