Endogenous cytokines that belong to the family of Type 1 interferons (including IFNa/p) engage their receptor (1FNAR1/2) to initiate a signaling cascade leading to expression of proteins that play an important role in preventing viral spread and tumor growth. Our preliminary data suggest that in cells that undergo Unfolded Protein Responses (UPR), and perhaps the more broad Integrated Stress Responses (ISR) due to oncogenic activation or oxygen and/ or nutritional deficit, there is an acquired ability to temper responses of these cells to future encounter with IFNa/(3. Based upon our preliminary data and available literature, we propose a hypothesis wherein UPR/ISR inducers suppress Type 1 IFN signaling. This suppression is hypothetically mediated by stimulating the phosphorylation-dependent ubiquitination and downregulation of IFNAR1 and, perhaps, by inactivation of its upstream and/or downstream mediators through expression of UPR-induced miR-211. We also propose that these mechanisms will enable tumor cells to evade the effects of the IFNa/(3 pathway and thereby contribute to the development and progression of tumors. To test our hypothesis, we propose to (i) delineate the mechanisms underlying downregulation of 1FNAR1 and inhibition of cellular responses to IFNa/p by UPR/ISR, and (ii) determine how downregulation of IFNAR1 in the tumor microenvironment affect tumor progression, and (iii) determine the role of these mechanisms in lymphoma development. Completion of this work will provide important knowledge regarding the mechanisms regulating abundance and function of IFN receptors, gain insight for the role of UPR/ISR in the regulation of Type 1 IFN responses, shed the light on the role of these events in tumor development and progression and directly contribute to the identification of novel enzymatic regulators of IFN responses that could be targeted for therapeutic purposes.

Public Health Relevance

Human cells produce anti-cancer IFNa/p cytokines, yet their effects are evaded by tumors. This application aims to delineate the mechanisms, by which tumor cells harboring specific activated oncogenes and/or starved of oxygen and nutrients are able to escape from IFNa/p control and to determine the role of these mechanisms in development and progression of lymphomas. These proposed studies are important for our understanding of how cancers are formed and potentially may lead to novel therapies.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01CA165997-02
Application #
8754468
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Bu, Yiwen; Diehl, J Alan (2016) PERK Integrates Oncogenic Signaling and Cell Survival During Cancer Development. J Cell Physiol 231:2088-96
Xia, Chuan; Vijayan, Madhuvanthi; Pritzl, Curtis J et al. (2016) Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1. J Virol 90:2403-17
Gui, Jun; Gober, Michael; Yang, Xiaoping et al. (2016) Therapeutic Elimination of the Type 1 Interferon Receptor for Treating Psoriatic Skin Inflammation. J Invest Dermatol 136:1990-2002
Zhang, Kangjian; Yin, Xiao-Fei; Yang, Yuan-Qin et al. (2016) A potent in vivo anti-tumor efficacy of novel recombinant type I interferon. Clin Cancer Res :
Xu, Zhenhua; Bu, Yiwen; Chitnis, Nilesh et al. (2016) miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun 7:11422
Katlinskaya, Yuliya V; Katlinski, Kanstantsin V; Yu, Qiujing et al. (2016) Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. Cell Rep 15:171-80
Bu, Yiwen; Diehl, J Alan (2016) Stressing out melanoma with an anti-GRP78 compound. Pigment Cell Melanoma Res 29:490-1
Katlinskaya, Yuliya V; Katlinski, Kanstantsin V; Lasri, Audrey et al. (2016) Type I Interferons Control Proliferation and Function of the Intestinal Epithelium. Mol Cell Biol 36:1124-35
Davar, Diwakar; Fuchs, Serge Y; Kirkwood, John M (2016) BRAF Inhibitors and IFNα: Plus, Minus, or Indeterminate? J Natl Cancer Inst 108:
Yu, Qiujing; Zhao, Bin; Gui, Jun et al. (2015) Type I interferons mediate pancreatic toxicities of PERK inhibition. Proc Natl Acad Sci U S A 112:15420-5

Showing the most recent 10 out of 19 publications