The main objective of the Chromatin and Gene Analysis Core is to create the technical and bioinformatic infrastructure to generate and mine the vast amounts of genome-wide gene expression and chromatin data that result from the PPG's work. In this way, the Core provides a crucial foundation for research in each of our four Projects, which explore molecular, cellular, and circuit mechanisms that underiie addiction-related behavioral abnormalities. PPG investigators have led the field in several aspects of genome-wide chromatin analyses, including pioneering these approaches in brain, which offers several unique technical challenges. We have defined optimal methods of chromatin immunoprecipitation (ChIP) for rodent and human brain. As well, the Core has established expertise in analyzing the rich ChlP-Seq and RNA-Seq datasets obtained, and will work to continually improve the tools available. Much ofthe new genome-wide data obtained by our PPG will be generated by some ofthe individual Projects and analyzed by the Core. In parallel, the Core is running more routine genome-wide assays and thereby offering a groundwork for the more specific measures in the Projects. Additionally, the Core is piloting several novel technologies and approaches, including methods to target a particular chromatin modification at an individual gene selectively within a given brain region in vivo. The Core is also testing whether any potent trans-generational transmission of behavioral abnormalities might be mediated via epigenetic changes in sperm or ova from drug-exposed mice. By consolidating the analytical work and some routine genome-wide analyses within a centralized Core, we ensure rigorous control over the data and facilitate comparisons of experimental findings across the individual Projects. This consolidation also makes financial sense, since we concentrate and maximize efficient use of the required expertise. Finally, the Core is responsible, with the Administrative Core, for developing and maintaining the multiple ways in which these highly complex and large datasets, and analytical tools, are safely stored and then shared across the multiple Projects and laboratories that comprise the PPG as well as with the scientific community and lay public at large.

Public Health Relevance

Addiction remains one of the worid's greatest public health problems, yet its pathophysiology remains incompletely understood and available treatments for addictions to various drugs of abuse are inadequately effective for most people. We believe that the most effective way of eventually developing definitive treatments and cures for addiction rests in part in a better understanding of its underlying neurobiology.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
2P01DA008227-22A1
Application #
8609280
Study Section
Special Emphasis Panel (ZRG1-IFCN-B (40))
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
22
Fiscal Year
2014
Total Cost
$274,695
Indirect Cost
$112,633
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Gokce, Ozgun; Stanley, Geoffrey M; Treutlein, Barbara et al. (2016) Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. Cell Rep 16:1126-37
Fuccillo, Marc V; Rothwell, Patrick E; Malenka, Robert C (2016) From Synapses to Behavior: What Rodent Models Can Tell Us About Neuropsychiatric Disease. Biol Psychiatry 79:4-6
Kozlenkov, Alexey; Wang, Minghui; Roussos, Panos et al. (2016) Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Res 44:2593-612
Cahill, Michael E; Bagot, Rosemary C; Gancarz, Amy M et al. (2016) Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling. Neuron 89:566-82
Calipari, Erin S; Bagot, Rosemary C; Purushothaman, Immanuel et al. (2016) In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci U S A 113:2726-31
Wang, Tianyuan; Santos, Janine H; Feng, Jian et al. (2016) A Novel Analytical Strategy to Identify Fusion Transcripts between Repetitive Elements and Protein Coding-Exons Using RNA-Seq. PLoS One 11:e0159028
Graziane, Nicholas M; Sun, Shichao; Wright, William J et al. (2016) Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nat Neurosci 19:915-25
Khibnik, Lena A; Beaumont, Michael; Doyle, Marie et al. (2016) Stress and Cocaine Trigger Divergent and Cell Type-Specific Regulation of Synaptic Transmission at Single Spines in Nucleus Accumbens. Biol Psychiatry 79:898-905
Kiraly, Drew D; Walker, Deena M; Calipari, Erin S et al. (2016) Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Sci Rep 6:35455
Egervari, Gabor; Landry, Joseph; Callens, James et al. (2016) Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target. Biol Psychiatry :

Showing the most recent 10 out of 267 publications