Investigations into the molecular targets of drugs of abuse and their associated intracellular signaling pathways by this Program Project Grant have yielded a wealth of information regarding the cellular perturbations associated with these drugs. The combined studies outlined in Project 1-3 will extend upon this existing knowledge with rigorous cell biological, molecular, biochemical, behavioral and electrophysiological studies of striatal neurons following drug treatment. The Scientific Core will be devoted to facilitating the experiments proposed in Projects 1-3. The centralized responsibility for the performance of routine tasks, such as the maintenance of mouse colonies and the supply of common reagents, provides for an efficient, flexible and cost-effective means to ensure an adequate supply of required materials for all Projects.The major aims of the Scientific Core will be:
Aim I. The characterization and maintenance of transgenic mouse colonies;
Aim II. The production of key reagents, including polyclonal antibodies, phosphorylation state-specific antibodies, the design and execution of yeast two-hybrid screens, and the production of AAV viruses;
Aim III. The analysis of dendritic spines. All Scientific Core Aims will be conducted in close, ongoing consultation with the staff from Projects 1-3, such that services are delivered as required. The mice produced by the Scientific Core will be essential for many of the studies proposed in Projects 1-3, due to a heavy reliance on genetically modified animals. Production by a centralized Core will ensure optimal animal production and use. The biochemical and immunological reagents generated by the Scientific Core will also be necessary for Projects. The analysis of dendritic spines will be essential for Project 1, and will also help Projects 2 and 3 to carry out their proposed studies of dendritic spine morphology.

Public Health Relevance

The proposed studies in this Program Project Grant will have the potential to provide greater insights into the causes of drug dependence as well as to help identify possible novel targets for pharmacological intervention. The Scientific Core will support this effort through facilitation of the three Projects in the Program Project Grant.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-G)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rockefeller University
New York
United States
Zip Code
Milosevic, Ana; Liebmann, Thomas; Knudsen, Margarete et al. (2016) Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain. J Comp Neurol :
Virk, Michael S; Sagi, Yotam; Medrihan, Lucian et al. (2016) Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum. Proc Natl Acad Sci U S A 113:734-9
Rapanelli, Maximiliano; Frick, Luciana R; Horn, Kyla D et al. (2016) The Histamine H3 Receptor Differentially Modulates Mitogen-activated Protein Kinase (MAPK) and Akt Signaling in Striatonigral and Striatopallidal Neurons. J Biol Chem 291:21042-21052
Liu, Ruijie; Correll, Robert N; Davis, Jennifer et al. (2015) Cardiac-specific deletion of protein phosphatase 1β promotes increased myofilament protein phosphorylation and contractile alterations. J Mol Cell Cardiol 87:204-13
Uematsu, Ken; Heiman, Myriam; Zelenina, Marina et al. (2015) Protein kinase A directly phosphorylates metabotropic glutamate receptor 5 to modulate its function. J Neurochem 132:677-86
Engmann, Olivia; Giralt, Albert; Gervasi, Nicolas et al. (2015) DARPP-32 interaction with adducin may mediate rapid environmental effects on striatal neurons. Nat Commun 6:10099
Lee, K-W; Westin, L; Kim, J et al. (2015) Alteration by p11 of mGluR5 localization regulates depression-like behaviors. Mol Psychiatry 20:1546-56
Yamagata, Yoko; Nairn, Angus C (2015) Contrasting features of ERK1/2 activity and synapsin I phosphorylation at the ERK1/2-dependent site in the rat brain in status epilepticus induced by kainic acid in vivo. Brain Res 1625:314-23
Plattner, Florian; Hayashi, Kanehiro; Hernández, Adan et al. (2015) The role of ventral striatal cAMP signaling in stress-induced behaviors. Nat Neurosci 18:1094-100
Colangelo, Christopher M; Ivosev, Gordana; Chung, Lisa et al. (2015) Development of a highly automated and multiplexed targeted proteome pipeline and assay for 112 rat brain synaptic proteins. Proteomics 15:1202-14

Showing the most recent 10 out of 194 publications