The dopamine transporter (DAT) mediates the inactivation of released dopamine (DA) through its reuptake. The long-term goals of this research are to understand how DA accumulation and efflux are regulated by post-translatlonal modification of DAT, by association of DAT with other proteins, and by localization of DAT to specific membrane microdomains. During the previous project period we demonstrated that phosphorylation ofthe DAT N-terminus is essential for AMPH-induced DA efflux, CaMKIIa binds to the distal C-termlnus of DAT, and CaMKIIa phosphorylates serines In the distal N-terminus of DAT in vitro. The CaMKll Inhibitor KN93 reduces AMPH-induced DA efflux in cells as well as in vivo in mouse striatum. In order to develop a model system for mechanistic examination, we have established a behavioral assay for AMPH-induced DAT-mediated DA efflux in Drosophila melanogaster larvae. In larvae, inhibition of CaMKll only in DA neurons inhibits the AMPH-induced behavior, whereas expression of constitutively active CaMKll enhances AMPH-induced behavior. We have shown that the membrane raft-associated protein Flotillini (Floti) is necessary for localization of DAT in membrane rafts. Floti knockdown blunts AMPH-induced DA efflux in mouse DA neurons in primary culture and AMPH-induced behavior in D. melanogaster larvae. The precise mechanisms by which Floti modulates DAT localization and function remain unknown. Our working hypothesis is that Floti traffics DAT to a membrane raft compartment containing the necessary signaling machinery to phosphorylate the DAT N-terminus and thereby allow AMPH-induced DA efflux. We propose to: 1) characterize the relationship between Floti, DAT, and DAT-interacting proteins in membrane rafts, 2) determine the role of Floti in AMPH-induced DA efflux and behavio, and 3) determine the role of N-terminal phosphorylation of DAT and its raft localization in AMPH-induced DA efflux and behavior.
These aims will be pursued in heterologous cells, in intact behaving D. melanogaster larvae, and in genetically modified mice, in a collaborative and synergistic interaction with the other PPG projects and the electrophysiological expertise of the core.

Public Health Relevance

The dopamine transporter is responsible for the rewarding properties and abuse potential of cocaine, amphetamine, and related psychostimulants. The related transporters for serotonin and norepinephrine are targets for antidepressant medications and secondary targets for psychostimulants. We strive to understand how these transporters are regulated in health and In disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
5P01DA012408-13
Application #
8376686
Study Section
Special Emphasis Panel (ZRG1-MDCN-G)
Project Start
Project End
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
13
Fiscal Year
2012
Total Cost
$343,979
Indirect Cost
Name
Weill Medical College of Cornell University
Department
Type
DUNS #
060217502
City
New York
State
NY
Country
United States
Zip Code
10065
Gregorio, G Glenn; Masureel, Matthieu; Hilger, Daniel et al. (2017) Single-molecule analysis of ligand efficacy in ?2AR-G-protein activation. Nature 547:68-73
Doktorova, M; Harries, D; Khelashvili, G (2017) Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations. Phys Chem Chem Phys 19:16806-16818
Razavi, Asghar M; Khelashvili, George; Weinstein, Harel (2017) A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter. Sci Rep 7:40076
Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M et al. (2017) Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice. Eur J Neurosci 45:121-128
Rahbek-Clemmensen, Troels; Lycas, Matthew D; Erlendsson, Simon et al. (2017) Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains. Nat Commun 8:740
Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana et al. (2017) Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT. Neuron 95:1074-1088.e7
Stolzenberg, Sebastian; Li, Zheng; Quick, Matthias et al. (2017) The role of transmembrane segment 5 (TM5) in Na2 release and the conformational transition of neurotransmitter:sodium symporters toward the inward-open state. J Biol Chem 292:7372-7384
Li, Xue; Maretzky, Thorsten; Perez-Aguilar, Jose Manuel et al. (2017) Structural modeling defines transmembrane residues in ADAM17 that are crucial for Rhbdf2-ADAM17-dependent proteolysis. J Cell Sci 130:868-878
LeVine, Michael V; Cuendet, Michel A; Khelashvili, George et al. (2016) Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chem Rev 116:6552-87
Vuorenpää, Anne; Jørgensen, Trine N; Newman, Amy H et al. (2016) Differential Internalization Rates and Postendocytic Sorting of the Norepinephrine and Dopamine Transporters Are Controlled by Structural Elements in the N Termini. J Biol Chem 291:5634-51

Showing the most recent 10 out of 137 publications