This Project will continue to provide the entire PPG with an increasingly integrative structural context for the proposed studies that seek an understanding of the functional mechanisms of the neurotransmitter transporters (NTs), and of interactions with cellular components that regulate their function and integrate it into the cell signaling processes. The mechanisms of interest underiie observable pharmacological properties and physiological effects of drugs of abuse, and make these NTs both a target for the design of therapeutic drugs, and a key element in (i)-the determinants, (ii)-the effects, and (iii)-the undesirable consequences, of substance abuse. We will use computational modeling and simulation to determine the conformational changes in the TM domains of NTs that are involved in the allosteric coupling between ligand and ion transport in DAT and other NT, and the changes produced by the psychostimulants amphetamine and cocaine, based on the hypothesis that the allosteric mechanism consist of a conserved spatial network of interactions among residues positioned non-sequentially in the transporters, which are triggered in a defined temporal sequence identifiable from the SMD simulations and extensive MD equilibrations of the resulting intermediate states. We also aim for a mechanistic characterization of the N- and C-terminal segments ofthe NTs DAT and SERT, in different functional states ofthe proteins (e.g, as induced by drugs of abuse), based on a hypothesis that functional roles of these segments depend on (i)-specific confor?? mations they adopt in different functional states, and (ii)-modulation of these conformations by cellular processes involving phosphorylation, and/or (scaffold and adaptor) protein binding. We will model and simulate computationally the functional determinants of such scaffold, adaptor and membrane remodeling domains that interact with the NTs in mechanisms of signaling and trafficking in the membrane environment. To this end will study biophysical properties, mechanisms of oligomerization, and dynamic regulation of several protein families including (i) PDZ-containing multidomain proteins (e.g., PICK1);(ii) BAR domains and their complexes with specific membrane regions;(iii) membrane-inserted proteins such as Flotillin 1.

Public Health Relevance

; The neurotransmitter transporters are targets for medication such as antidepressants and anti-anxiety drugs, but are also responsible for the abuse potential of many drugs including cocaine, amphetamine, and related psychostimulants. Based on new molecular structures and powerful methods of biophysics used in modeling with computation, we are trying to understand how these transporters function, what the effects of drugs are on these function, and how thev are regulated in health and in disease

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-G)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Weill Medical College of Cornell University
New York
United States
Zip Code
Kazmier, Kelli; Sharma, Shruti; Quick, Matthias et al. (2014) Conformational dynamics of ligand-dependent alternating access in LeuT. Nat Struct Mol Biol 21:472-9
Hansen, Freja H; Skjørringe, Tina; Yasmeen, Saiqa et al. (2014) Missense dopamine transporter mutations associate with adult parkinsonism and ADHD. J Clin Invest 124:3107-20
Johner, Niklaus; Mondal, Sayan; Morra, Giulia et al. (2014) Protein and lipid interactions driving molecular mechanisms of in meso crystallization. J Am Chem Soc 136:3271-84
Hamilton, Peter J; Belovich, Andrea N; Khelashvili, George et al. (2014) PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Nat Chem Biol 10:582-9
Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik (2014) Serotonin-induced down-regulation of cell surface serotonin transporter. Neurochem Int 73:107-12
LeVine, Michael V; Weinstein, Harel (2014) NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT. PLoS Comput Biol 10:e1003603
Erlendsson, Simon; Rathje, Mette; Heidarsson, Pétur O et al. (2014) Protein interacting with C-kinase 1 (PICK1) binding promiscuity relies on unconventional PSD-95/discs-large/ZO-1 homology (PDZ) binding modes for nonclass II PDZ ligands. J Biol Chem 289:25327-40
Pinheiro, Paulo S; Jansen, Anna M; de Wit, Heidi et al. (2014) The BAR domain protein PICK1 controls vesicle number and size in adrenal chromaffin cells. J Neurosci 34:10688-700
Dehnes, Yvette; Shan, Jufang; Beuming, Thijs et al. (2014) Conformational changes in dopamine transporter intracellular regions upon cocaine binding and dopamine translocation. Neurochem Int 73:4-15
Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob et al. (2014) The serotonin transporter undergoes constitutive internalization and is primarily sorted to late endosomes and lysosomal degradation. J Biol Chem 289:23004-19

Showing the most recent 10 out of 109 publications