The kidney plays a key role in the control of body fluid volume and composition, and tubular and/or hemodynamic dysfunction are common features of diseases such as hypertension and diabetes. The renal P450 arachidonic acid (AA) monooxygenase biosynthesizes hydroxy- and epoxy-AA derivatives that are known to modulate tubular transport and vascular reactivity. Animal models of P450 gene dysfunction confirmed the physiological importance of these enzymes, characterized their pathophysiological roles, and provided insights into the mechanism of action of their metabolites. Studies of the pathophysiological roles of human P450s identified associations between P450 gene variants with hypertension, the progression of renal disease, and with components of metabolic syndrome. This application proposes to build upon these studies and to address: a) mechanisms by which the P450-eicosanoids regulate renal tubular transport and vascular reactivity, b) the role of P450s in human hypertension and renal complications of diabetes, and c) the molecular basis of these pathophysiological roles. To achieve these goals, we developed a multidisciplinary approach for studies of P450-isoform specific phenotypes at the cellular, organ and whole animal levels, the analysis of associations between alterations in human P450 gene structure/expression and disease, and for clinical studies of their metabolic and functional consequences. Cyp2c and Cyp4a knockout mice will be used to study gene-dependent changes in: a) renal EET and/or 20-HETE synthase expression, b) tubular transport and/or vascular reactivity, and c) systemic blood pressure and the progression of renal disease. Associations between CYP2C8/2C9 or CYP4A11 genotypes with blood pressure, insulin sensitivity, and urine and plasma EET and 20-HETE levels will be explored to define pathophysiological correlations between variant alleles, AA epoxidation/hydroxylation, and individual responses to changes in dietary salt intake, the administration of diuretics, or peroxisomal proliferator activated receptor (alpha) ligands. Our long term goals are to provide a molecular understanding of role(s) of P450 eicosanoids in renal physiological, their mechanism and site of action, and relevance to human disease. These are needed for the development of meaningful approaches for: a) the unequivocal definition of human pathophysiological significance, and b) future pharmacological targeting, and clinical diagnosis and intervention.

Public Health Relevance

Hypertension and diabetes are leading causes of cardiovascular, cerebral, and renal disease morbidity and mortality, and their prevalence and multiple medical and socio-economic consequences make them a major health challenge. It is expected that the definition of a role for kidney P450s in human hypertension and diabetes will lead to new approaches for the early diagnosis and treatment of these diseases, and contribute to prevent their devastating consequences.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK038226-27
Application #
8521251
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
27
Fiscal Year
2013
Total Cost
$269,424
Indirect Cost
$91,950
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Savas, Ãœzen; Wei, Shouzou; Hsu, Mei-Hui et al. (2016) 20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice: NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION, HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II RECEPTOR. J Biol Chem 291:16904-19
Hye Khan, Md Abdul; Fish, Brian; Wahl, Geneva et al. (2016) Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy. Clin Sci (Lond) 130:587-99
Chiba, Takuto; Skrypnyk, Nataliya I; Skvarca, Lauren Brilli et al. (2016) Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. J Am Soc Nephrol 27:495-508
Sporková, Alexandra; Reddy, Rami N; Falck, John R et al. (2016) Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive Rats' Exhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids. Am J Med Sci 351:513-9
Miller, Bradley; Palygin, Oleg; Rufanova, Victoriya A et al. (2016) p66Shc regulates renal vascular tone in hypertension-induced nephropathy. J Clin Invest 126:2533-46
Paudyal, Mahesh P; Adebesin, Adeniyi Michael; Burt, Scott R et al. (2016) Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science 353:1144-7
Luther, James M; Brown, Nancy J (2016) Epoxyeicosatrienoic acids and glucose homeostasis in mice and men. Prostaglandins Other Lipid Mediat 125:2-7
Chen, Li; Joseph, Gregory; Zhang, Frank F et al. (2016) 20-HETE contributes to ischemia-induced angiogenesis. Vascul Pharmacol 83:57-65
Garcia, Victor; Joseph, Gregory; Shkolnik, Brian et al. (2015) Angiotensin II receptor blockade or deletion of vascular endothelial ACE does not prevent vascular dysfunction and remodeling in 20-HETE-dependent hypertension. Am J Physiol Regul Integr Comp Physiol 309:R71-8
Capdevila, Jorge H; Wang, Wenhui; Falck, John R (2015) Arachidonic acid monooxygenase: Genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat 120:40-9

Showing the most recent 10 out of 354 publications