Over 20 million people in the US have diabetes mellitus (DM). Of patients with DM, type II accounts for 90-95% of all diagnosed cases. Many diabetic patients develop significant gastrointestinal symptoms, with up to 60% of longstanding diabetics suffering from delayed gastrointestinal transit, diarrhea or constipation. Chronic constipation associated with type II DM, in addition to diarrhea and incontinence, is increasingly regarded as having serious effects on patient quality of life. Current treatments of Gl complications have considerable side-effects and therefore a greater understanding of the disease would provide novel targets for treatment and possible cure. The current dogma is that Gl disorders associated with type II DM is a consequence of an enteric neuropathy. In the present proposal we have investigated the mechanisms underlying Gl disorders in type II DM. Rather than an enteric neuropathy, we provide evidence that interstitial cells of Cajal that generate pacemaker activity and are critical for enteric motor neurotransmission are disrupted in type II DM. The finding that ICC are affected by type II DM introduces a novel hypothesis that Gl dysmotility and neuromuscular dysfunction associated with this disease could, in part, be due to changes in ICC pacemaker activity and the 'in-series'relationship that exists between enteric motor nerves and intramuscular ICC. The loss of Kit-labeling of ICC associated with DM in humans and animal models has been attributed to cell death though the apoptotic signaling pathway or transdifferentiation. We investigated whether ICC homeodynamics are affected by increased apoptosis or decreased cell division. The mechanism(s) of cell growth and expansion of ICC populations will be investigated in type II DM tissues allotransplanted with ICC. In summary, this proposal will provide important information about the defects in ICC networks (which are involved in pacemaker activity and in enteric neuromuscular transmission witin the Gl tract) that occur in the Gl tracts of patients with type II DM. New information will be obtained about the processes underlying the disruption of neuromuscular function in the Gl tracts of animal models with DM, that may be causative in delayed intestinal transit, constipation or diarrhea in human patients.

Public Health Relevance

Relevance to gastrointestinal motility disorders associated with type II diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK041315-25
Application #
8469492
Study Section
Special Emphasis Panel (ZDK1-GRB-9)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
25
Fiscal Year
2013
Total Cost
$157,882
Indirect Cost
$45,511
Name
University of Nevada Reno
Department
Type
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Baker, Salah A; Drumm, Bernard T; Saur, Dieter et al. (2016) Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine. J Physiol 594:3317-38
Durnin, Leonie; Hayoz, Sebastien; Corrigan, Robert D et al. (2016) Urothelial purine release during filling of murine and primate bladders. Am J Physiol Renal Physiol 311:F708-F716
Sanders, Kenton M; Ward, Sean M; Friebe, Andreas (2016) Rebuttal from Kenton M. Sanders, Sean M. Ward and Andreas Friebe. J Physiol 594:1515
Hwang, Sung Jin; Basma, Naseer; Sanders, Kenton M et al. (2016) Effects of new-generation inhibitors of the calcium-activated chloride channel anoctamin 1 on slow waves in the gastrointestinal tract. Br J Pharmacol 173:1339-49
Durnin, L; Moreland, N; Lees, A et al. (2016) A commonly used ecto-ATPase inhibitor, ARL-67156, blocks degradation of ADP more than the degradation of ATP in murine colon. Neurogastroenterol Motil 28:1370-81
Sanders, Kenton M; Ward, Sean M; Friebe, Andreas (2016) CrossTalk proposal: Interstitial cells are involved and physiologically important in neuromuscular transmission in the gut. J Physiol 594:1507-9
Sanders, Kenton M (2015) New Molecular Tools to Investigate the Development and Functions of Interstitial Cells of Cajal in the GI Tract. Gastroenterology 149:283-6
Peri, Lauren E; Koh, Byoung H; Ward, Grace K et al. (2015) A novel class of interstitial cells in the mouse and monkey female reproductive tracts. Biol Reprod 92:102
Baker, Salah A; Hennig, Grant W; Ward, Sean M et al. (2015) Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon. J Physiol 593:1945-63
Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate et al. (2015) Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal. Am J Physiol Cell Physiol 308:C608-20

Showing the most recent 10 out of 349 publications