Instaictlons); Although research has demonstrated protocol changes to improve stone comminution and reduce tissue injury in shock wave lithotripsy (SWL), such changes have been slowly adopted. An important reason Is that the users do not have real-time feedback on the effect of a protocol change. Accordingly, we propose the development of a variety of feedback techniques to improve patient outcomes.
In Specific Aim (SA) 1, we propose to develop a novel imaging technique that promises to permit real-time localization of stones as small as 2 mm, if not smaller. We have discovered (or rediscovered) an artifact, called """"""""twinkling"""""""" that occurs when Doppler ultrasound is used to image a stone in which a multi-colored image is generated that accurately replicates the size of the stone. In SA2, we propose to develop an instrument to send, through the lithotripter focus, ultrasound pulses that would be reflected and subsequently detected only when a stone was located at the focus;using these pulses as a trigger, shock waves would only be applied to stones, and would thus account for stone movement, including the effects of respiration. In SA3, we propose to develop a passive acoustic receiver that interrogates the sound scattered from the stone by the applied shock waves and correlates the frequency content of this sound with the size of the fragments. This concept would permit the user to learn when the stone was sufficiently comminuted and treatment could be terminated. In SA4, we address residual stone fragments and the challenge to current lithotripters in treating stones in the lower calyx, specifically by utilizing radiation forces to move stones and fragments within the collecting system of the kidney itself. Finally, in SAS, we propose to investigate a new mechanism for shock-wave-induced tissue injury;viz., stresses induced by tension, rather than compression. Our preliminary studies have demonstrated that cavitation damage to blood vessels probably results from invagination ofthe vessel wall when the bubble collapses, rather than stresses imposed by bubble expansion or reentrant liquid jets. Overall, the proposal takes novel concepts, quantifies basic science techniques, and generates practical solutions to areas where significant improvement can be made in clinical lithotripsy and patient outcomes.

Public Health Relevance

(See Instructions): Shock wave lithotripsy (SWL) is the most common treatment for a prevalent disease, kidney stones. Yet like other treatments, SWL has side-effects. The proposal goal is to provide urologists new feedback so side- effects can be minimized and a broader spectrum of patients can be treated. The effect on public health will be an increase in successful outcomes and a decrease in retreatments, complications, and costly alternative treatments .

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-R)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University-Purdue University at Indianapolis
United States
Zip Code
Kelsey, Rebecca (2016) Stones: Expelling stones with ultrasonic propulsion. Nat Rev Urol 13:7
Harper, Jonathan D; Cunitz, Bryan W; Dunmire, Barbrina et al. (2016) First in Human Clinical Trial of Ultrasonic Propulsion of Kidney Stones. J Urol 195:956-64
Lingeman, James E (2016) The Era of Shock Wave Lithotripsy is Over: No. J Urol 195:16-7
Handa, Rajash K; Johnson, Cynthia D; Connors, Bret A et al. (2016) Percutaneous Renal Access: Surgical Factors Involved in the Acute Reduction of Renal Function. J Endourol 30:178-83
Harrogate, Suzanne R; Yick, L M Shirley; Williams Jr, James C et al. (2016) Quantification of the Range of Motion of Kidney and Ureteral Stones During Shockwave Lithotripsy in Conscious Patients. J Endourol 30:406-10
Matlaga, Brian R (2016) Editorial Comment. J Urol 195:176-7
Handa, Rajash K; Lingeman, James E; Bledsoe, Sharon B et al. (2016) Intraluminal measurement of papillary duct urine pH, in vivo: a pilot study in the swine kidney. Urolithiasis 44:211-7
Dy, Geolani W; Hsi, Ryan S; Holt, Sarah K et al. (2016) National Trends in Secondary Procedures Following Pediatric Pyeloplasty. J Urol 195:1209-14
Dunmire, Barbrina; Harper, Jonathan D; Cunitz, Bryan W et al. (2016) Use of the Acoustic Shadow Width to Determine Kidney Stone Size with Ultrasound. J Urol 195:171-7
May, Philip C; Bailey, Michael R; Harper, Jonathan D (2016) Ultrasonic propulsion of kidney stones. Curr Opin Urol 26:264-70

Showing the most recent 10 out of 204 publications