Our prior work has shown that calcium (Ca) stone formers (SF) with idiopathic hypercalciuria (IH) have decreased renal tubule Ca reabsorption which is most marked after meals. Proximal tubule (PT) Ca reabsorption appears to be decreased in Ca oxalate SF (ICSF) but not Ca phosphate (CaP) SF (IPSF), meaning that other tubule sites must be affected in IPSF. ICSF and IPSF also differ in the site of mineral deposition in their kidneys - interstitial plaque vs. tubule plugs. These experiments use a Gerneral Clinical Research Center protocol to study the sites of abnormal Ca reabsorption in ICSF and IPSF compared with normals (N). We hypothesize that TAL Ca reabsorption will be increased in ICSF, fostering plaque via vas wash-down. We use furosemide (Fur) blockade of thick ascending limb (TAL) transport to confirm the decreased PT transport discovered using lithium clearnace (Aim 1.1a), and to gauge absolute TAL Ca reabsorption (Aim 1.1b). We also predict that TAL Ca reabsorption is decreased in IPSF, and also results in decreased TAL bicarbonate absorption, resulting in increased urine pH and CaP SS which promotes tubule plugging (Aim 1.1c). We test several potential signallers of renal Ca reabsorption for a relationship to Ca transport, looking for dyssynchrony with transport changes in a time resolved protocol, and differences in regression of signaller levels and Ca reabsorption between ICSF, IPSF, and N (Aim 1.2a,b), seeking potential drug targets. Thiazide (TZ) is a main treatment for Ca stone prevention and lowers urine Ca;animal experiments suggest that PT Ca reabsorption is increased with TZ. If PT reabsorption is increased by TZ in humans, it may reduce plaque formation as well as stone recurrence (Aim 1.3). Calcitriol levels are elevated in many Ca SF, and administration of calcitriol to N in non-hypercalcemic doses can reproduce findings of IH, including inability to conserve Ca on a low Ca diet. We will test whether calcitriol can decrease PT Ca reabsorption as seen in IH (Aim 1.4). All SF studied in Project 1 will have biopsy and tissue studies in Projects 2 and 3, so results of physiology studies can be combined with histopathologic data to test project aims (PI-6) relating Ca transport to tissue Ca levels, mineral deposits, transporters and receptors.

Public Health Relevance

Calcium (Ca) kidney stones are common, and can cause kidney damage as well as need for surgery and hospitalization. Abnormal renal Ca transport is the major abnormality leading to stones and to the associated bone disease. Clarification of the mechanisms for abnormal Ca reabsorption will lead to potential drug and gene targets and improvements in prevention of calcium kidney stones.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
2P01DK056788-11A1
Application #
8231162
Study Section
Special Emphasis Panel (ZDK1-GRB-R (M2))
Project Start
2011-09-20
Project End
2016-07-30
Budget Start
2011-09-20
Budget End
2012-07-31
Support Year
11
Fiscal Year
2011
Total Cost
$277,658
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Winfree, Seth; Khan, Shehnaz; Micanovic, Radmila et al. (2017) Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells. J Am Soc Nephrol 28:2108-2118
Winfree, Seth; Ferkowicz, Michael J; Dagher, Pierre C et al. (2017) Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Transl Res 189:1-12
Williams Jr, James C; Worcester, Elaine; Lingeman, James E (2017) What can the microstructure of stones tell us? Urolithiasis 45:19-25
Borofsky, Michael S; Paonessa, Jessica E; Evan, Andrew P et al. (2016) A Proposed Grading System to Standardize the Description of Renal Papillary Appearance at the Time of Endoscopy in Patients with Nephrolithiasis. J Endourol 30:122-7
Coe, Fredric L; Worcester, Elaine M; Evan, Andrew P (2016) Idiopathic hypercalciuria and formation of calcium renal stones. Nat Rev Nephrol 12:519-33
Borofsky, Michael S; Wollin, Daniel A; Reddy, Thanmaya et al. (2016) Salvage Percutaneous Nephrolithotomy: Analysis of Outcomes following Initial Treatment Failure. J Urol 195:977-81
Handa, Rajash K; Lingeman, James E; Bledsoe, Sharon B et al. (2016) Intraluminal measurement of papillary duct urine pH, in vivo: a pilot study in the swine kidney. Urolithiasis 44:211-7
Hoover, Robert S; Tomilin, Viktor; Hanson, Lauren et al. (2016) PTH modulation of NCC activity regulates TRPV5 Ca2+ reabsorption. Am J Physiol Renal Physiol 310:F144-51
Witzmann, Frank A; Evan, Andrew P; Coe, Fredric L et al. (2016) Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteome Sci 14:4
Ko, Benjamin; Bergsland, Kristin; Gillen, Daniel L et al. (2015) Sex differences in proximal and distal nephron function contribute to the mechanism of idiopathic hypercalcuria in calcium stone formers. Am J Physiol Regul Integr Comp Physiol 309:R85-92

Showing the most recent 10 out of 136 publications