This project seeks to understand the metabolic origins of skeletal muscle insulin resistance, a physiological abnormality common to obesity, diabetes and aging. In recent studies that applied targeted metabolomics we discovered that the eariy stages of diet-induced weight gain and glucose intolerance are accompanied by increased fat oxidation and intramuscular accumulafion of mitochondrial-derived acylcarnitine metabolites, byproducts of incomplete substrate catabolism. Likewise, the addifion of branched chain amino acids (BCAA) to a high fat diet exacerbated insulin resistance while provoking a further increase in muscle levels of both lipid- and amino acid-derived acylcarnifines. These metabolomic signatures suggest that the mechanisms underlying diet-induced insulin resistance might be directly related to carbon load within the mitochondrial compartment. Thus, the overarching goal of this project is to test the hypothesis that excessive mitochondrial lipid and BCAA catabolism plays a central role in triggering mitochondrial stress, insulin resistance and eventual metabolic failure during the pathological progression of diet-induced obesity. Our working model predicts that acylcarnifine accumulation in the obese state refiects a mitochondrial environment that is conducive to hyperacetylafion of mitochondrial proteins and increased generation of reacfive oxygen species. These hypotheses will be tested by comtjining state-of-the-art metabolomics and metabolic flux analyses with genefically modified mouse mocjels harboring targeted manipulations in fat oxidafion and acylcarnifine production. This project is germane to current antiobesity and anfidiabetic drug development efforts aimed at increasing skeletal muscle fat oxidation, and could lead to paradigm shifting insights into the interplay between mitochondrial funcfion and insulin action in muscle.

Public Health Relevance

Weight gain, caloric surplus and physical inactivity disrupt glucose disposal into skeletal muscle, which in turn increases risk of cardiometabolic diseases such as type 2 diabetes. By examining obesity-related perturbations in mitochondrial fatty acid and amino acid metabolism, this project will aid efforts to understand, treat and prevent insulin resistance and glucose intolerance.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-N (J2))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
United States
Zip Code
Ren, Jimin; Sherry, A Dean; Malloy, Craig R (2016) Efficient (31) P band inversion transfer approach for measuring creatine kinase activity, ATP synthesis, and molecular dynamics in the human brain at 7 T. Magn Reson Med :
Kucejova, Blanka; Duarte, Joao; Satapati, Santhosh et al. (2016) Hepatic mTORC1 Opposes Impaired Insulin Action to Control Mitochondrial Metabolism in Obesity. Cell Rep 16:508-19
Ren, Jimin; Sherry, A Dean; Malloy, Craig R (2016) Band inversion amplifies (31) P-(31) P nuclear overhauser effects: Relaxation mechanism and dynamic behavior of ATP in the human brain by (31) P MRS at 7 T. Magn Reson Med :
Jin, Eunsook S; Moreno, Karlos X; Wang, Jian-Xiong et al. (2016) Metabolism of hyperpolarized [1-(13)C]pyruvate through alternate pathways in rat liver. NMR Biomed 29:466-74
Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R (2016) An Oral Load of [13C3]Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification, Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver. J Biol Chem 291:19031-41
Zhang, Wenwei; Bu, So Young; Mashek, Mara T et al. (2016) Integrated Regulation of Hepatic Lipid and Glucose Metabolism by Adipose Triacylglycerol Lipase and FoxO Proteins. Cell Rep 15:349-59
Sun, Haipeng; Olson, Kristine C; Gao, Chen et al. (2016) Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation 133:2038-49
Gurley, Jami M; Ilkayeva, Olga; Jackson, Robert M et al. (2016) Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism. Diabetes 65:3585-3597
White, Phillip J; Lapworth, Amanda L; An, Jie et al. (2016) Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab 5:538-51
Davies, Michael N; Kjalarsdottir, Lilja; Thompson, J Will et al. (2016) The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins. Cell Rep 14:243-54

Showing the most recent 10 out of 169 publications