The Sarah W. Stedman Nutrition and Metabolism Center at Duke has developed a research-dedicated Metabolomics core laboratory that conducts metabolic, endocrine, inflammatory marker, and physiologic profiling of cultured cells, as well as tissue and bodily fluid samples from animal models and human subjects. Its role in the current program will be to provide both targeted and non-targeted mass spectrometry (MS)- based metabolic profiling assays in tissue and blood fluid samples for all of the projects. The core will also provide key assays of peptide hormones such as IGF-1, IGF-1 binding proteins, growth hormone, and leptin for Project 1, as well as insulin and glucose measurements to support Project 4. The core will also develop or refine novel metabolomics technologies relevant to this program, including development of new chromatography methods for resolving isobaric metabolites such as leucine and isoleucine in MS assays, targeted assays for distal metabolites in the BCAA and Tyr/Phe catabolic pathways, and refinement of non- targeted GC/MS-based metabolic profiling methods. Participation of this core in the program is highly significant because it provides powerful capabilities for detecting changes in metabolite levels in multiple tissues and bodily fluids in response to genetic and dietary manipulations, thereby providing insights into key mechanisms underlying development of insulin resistance and type 2 diabetes.

Public Health Relevance

(See Instructions): Participation of this core in the program is highly relevant because it provides powerful capabilities for detecting changes in metabolite levels in multiple tissues and bodily fluids in response to genetic and dietary manipulations, thereby providing insights into key mechanisms underlying development of insulin resistance and type 2 diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK058398-13
Application #
8692745
Study Section
Special Emphasis Panel (ZDK1-GRB-N)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
13
Fiscal Year
2014
Total Cost
$212,592
Indirect Cost
$77,183
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Ren, Jimin; Yang, Baolian; Sherry, A Dean et al. (2015) Exchange kinetics by inversion transfer: integrated analysis of the phosphorus metabolite kinetic exchanges in resting human skeletal muscle at 7 T. Magn Reson Med 73:1359-69
Bartz, Sarah; Mody, Aaloke; Hornik, Christoph et al. (2014) Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab 99:2128-37
Fabbrini, Elisa; Serafini, Mauro; Colic Baric, Irena et al. (2014) Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes 63:976-81
Purmal, Colin; Kucejova, Blanka; Sherry, A Dean et al. (2014) Propionate stimulates pyruvate oxidation in the presence of acetate. Am J Physiol Heart Circ Physiol 307:H1134-41
Mody, Aaloke; Bartz, Sarah; Hornik, Christoph P et al. (2014) Effects of HIV infection on the metabolic and hormonal status of children with severe acute malnutrition. PLoS One 9:e102233
Sinha, Rohit A; Farah, Benjamin L; Singh, Brijesh K et al. (2014) Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 59:1366-80
Thalacker-Mercer, Anna E; Ingram, Katherine H; Guo, Fangjian et al. (2014) BMI, RQ, diabetes, and sex affect the relationships between amino acids and clamp measures of insulin action in humans. Diabetes 63:791-800
Heinicke, Katja; Dimitrov, Ivan E; Romain, Nadine et al. (2014) Reproducibility and absolute quantification of muscle glycogen in patients with glycogen storage disease by 13C NMR spectroscopy at 7 Tesla. PLoS One 9:e108706
Khoo, Chin Meng; Muehlbauer, Michael J; Stevens, Robert D et al. (2014) Postprandial metabolite profiles reveal differential nutrient handling after bariatric surgery compared with matched caloric restriction. Ann Surg 259:687-93
Seiler, Sarah E; Martin, Ola J; Noland, Robert C et al. (2014) Obesity and lipid stress inhibit carnitine acetyltransferase activity. J Lipid Res 55:635-44

Showing the most recent 10 out of 121 publications